State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
Department of Infectious Diseases and Public Health, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China.
Mol Cell. 2024 Feb 15;84(4):744-759.e6. doi: 10.1016/j.molcel.2024.01.002. Epub 2024 Jan 23.
Serine metabolism is involved in the fate decisions of immune cells; however, whether and how de novo serine synthesis shapes innate immune cell function remain unknown. Here, we first demonstrated that inflammatory macrophages have high expression of phosphoglycerate dehydrogenase (PHGDH, the rate-limiting enzyme of de novo serine synthesis) via nuclear factor κB signaling. Notably, the pharmacological inhibition or genetic modulation of PHGDH limits macrophage interleukin (IL)-1β production through NAD accumulation and subsequent NAD-dependent SIRT1 and SIRT3 expression and activity. Mechanistically, PHGDH not only sustains IL-1β expression through H3K9/27 acetylation-mediated transcriptional activation of Toll-like receptor 4 but also supports IL-1β maturation via NLRP3-K21/22/24/ASC-K21/22/24 acetylation-mediated activation of the NLRP3 inflammasome. Moreover, mice with myeloid-specific depletion of Phgdh show alleviated inflammatory responses in lipopolysaccharide-induced systemic inflammation. This study reveals a network by which a metabolic enzyme, involved in de novo serine synthesis, mediates post-translational modifications and epigenetic regulation to orchestrate IL-1β production, providing a potential inflammatory disease target.
丝氨酸代谢参与免疫细胞的命运决定;然而,从头合成丝氨酸是否以及如何影响先天免疫细胞功能尚不清楚。在这里,我们首先通过核因子 κB 信号表明,炎性巨噬细胞中磷酸甘油酸脱氢酶(PHGDH,从头合成丝氨酸的限速酶)表达水平较高。值得注意的是,PHGDH 的药理学抑制或基因调节通过 NAD 积累以及随后的 NAD 依赖性 SIRT1 和 SIRT3 表达和活性限制了巨噬细胞白细胞介素(IL)-1β的产生。从机制上讲,PHGDH 不仅通过 TLR4 的 H3K9/27 乙酰化介导的转录激活来维持 IL-1β的表达,而且还通过 NLRP3 炎症小体的 NLRP3-K21/22/24/ASC-K21/22/24 乙酰化介导的激活来支持 IL-1β成熟。此外,髓系特异性敲除 Phgdh 的小鼠在脂多糖诱导的全身炎症反应中表现出炎症反应减轻。这项研究揭示了一个网络,其中一种代谢酶,参与从头合成丝氨酸,介导翻译后修饰和表观遗传调控,以协调 IL-1β的产生,为炎症性疾病提供了一个潜在的治疗靶点。