Suppr超能文献

老年期抑郁症的代谢组学见解:一项系统综述

Metabolomic insights into late-life depression: a systematic review.

作者信息

Gao Yao, Hu Jian-Zhen, Wen Zhong-Ping, Dong Tao, Du Xin-Zhe, Liu Zhi-Fen, Liu Sha

机构信息

Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China.

Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China.

出版信息

BMC Geriatr. 2025 Aug 13;25(1):618. doi: 10.1186/s12877-025-06256-2.

Abstract

Late-life depression (LLD) is a prevalent mental health issue that significantly impacts the quality of life in the elderly population. In recent years, metabolomics has emerged as a novel research tool, offering fresh insights into the molecular mechanisms underlying LLD. This systematic review synthesizes metabolomic studies from January 2004 to March 2024, aiming to identify differential metabolites, explore diagnostic and predictive potential, and investigate aberrant metabolic pathways in LLD. A total of 12 relevant studies were included, revealing differential metabolites such as amino acids and fatty acids, as well as associated metabolic pathways. The study's findings provide insights into the prediction and diagnosis of LLD, highlighting the multifaceted metabolic disturbances associated with the condition. By synthesizing existing literature, we highlight the importance of metabolomic research in identifying biomarkers for LLD and potential therapeutic targets, addressing current gaps in understanding the pathophysiology of this condition.

摘要

老年期抑郁症(LLD)是一个普遍存在的心理健康问题,对老年人群的生活质量有重大影响。近年来,代谢组学已成为一种新型研究工具,为LLD潜在的分子机制提供了新的见解。本系统综述综合了2004年1月至2024年3月的代谢组学研究,旨在识别差异代谢物,探索诊断和预测潜力,并研究LLD中异常的代谢途径。共纳入12项相关研究,揭示了氨基酸和脂肪酸等差异代谢物以及相关代谢途径。该研究结果为LLD的预测和诊断提供了见解,突出了与该疾病相关的多方面代谢紊乱。通过综合现有文献,我们强调了代谢组学研究在识别LLD生物标志物和潜在治疗靶点方面的重要性,填补了目前对该疾病病理生理学理解的空白。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验