Zhang Lei, Zheng Jianzha, Liu Cong, Xie Yifei, Lu Hanyu, Luo Qinrong, Liu Yulong, Yang Huidong, Shen Kai, Mai Yaohua
Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou, 510632, China.
Institute of New Energy Technology, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China.
Small. 2024 Jul;20(27):e2310418. doi: 10.1002/smll.202310418. Epub 2024 Jan 24.
Antimony selenosulfide (Sb(S,Se)) is an emerging quasi-1D photovoltaic semiconductor with exceptional photoelectric properties. The low-symmetry chain structure contains complex defects and makes it difficult to improve electrical properties via doping method. This article reports a doping strategy to enhance the efficiency of Sb(S,Se) solar cells by using alkali halide (CsI) as the hydrothermal reaction precursor. It is found that the Cs and I ions are effectively doped and atomically coordinate with Sb ions and S/Se ions. The CsI-doping Sb(S,Se) absorbers exhibit enhanced grain morphologies and reduced trap densities. The consequential CsI-doping Sb(S,Se) based solar cells demonstrate favorable band alignment, suppressed carrier recombination, and improved device performance. An efficiency as high as 10.05% under standard AM1.5 illumination irradiance is achieved. This precursor-based alkali halide doping strategy provides a useful guidance for high-efficiency antimony selenosulfide solar cells.
硒硫化锑(Sb(S,Se))是一种新兴的具有优异光电性能的准一维光伏半导体。其低对称链状结构包含复杂缺陷,使得通过掺杂方法改善电学性能变得困难。本文报道了一种掺杂策略,通过使用碱金属卤化物(CsI)作为水热反应前驱体来提高Sb(S,Se)太阳能电池的效率。研究发现,Cs和I离子能够有效掺杂并与Sb离子以及S/Se离子进行原子配位。CsI掺杂的Sb(S,Se)吸收层呈现出改善的晶粒形态并降低了陷阱密度。由此制备的基于CsI掺杂Sb(S,Se)的太阳能电池展现出良好的能带排列、抑制的载流子复合以及改善的器件性能。在标准AM1.5光照辐照度下实现了高达10.05%的效率。这种基于前驱体的碱金属卤化物掺杂策略为高效硒硫化锑太阳能电池提供了有益的指导。