Suppr超能文献

对sp.中五种新型抗病蛋白针对白叶枯病和稻瘟病的计算机模拟表征。

In silico characterization of five novel disease-resistance proteins in sp. against bacterial leaf blight and rice blast diseases.

作者信息

Dhiman Vedikaa, Biswas Soham, Shekhawat Rajveer Singh, Sadhukhan Ayan, Yadav Pankaj

机构信息

Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, 342030 Rajasthan India.

Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, Telangana India.

出版信息

3 Biotech. 2024 Feb;14(2):48. doi: 10.1007/s13205-023-03893-5. Epub 2024 Jan 22.

Abstract

UNLABELLED

In the current study, gene network analysis revealed five novel disease-resistance proteins against bacterial leaf blight (BB) and rice blast (RB) diseases caused by pv. () and (. ), respectively. In silico modeling, refinement, and model quality assessment were performed to predict the best structures of these five proteins and submitted to ModelArchive for future use. An in-silico annotation indicated that the five proteins functioned in signal transduction pathways as kinases, phospholipases, transcription factors, and DNA-modifying enzymes. The proteins were localized in the nucleus and plasma membrane. Phylogenetic analysis showed the evolutionary relation of the five proteins with disease-resistance proteins (XA21, OsTRX1, PLD, and HKD-motif-containing proteins). This indicates similar disease-resistant properties between five unknown proteins and their evolutionary-related proteins. Furthermore, gene expression profiling of these proteins using public microarray data showed their differential expression under and infection. This study provides an insight into developing disease-resistant rice varieties by predicting novel candidate resistance proteins, which will assist rice breeders in improving crop yield to address future food security through molecular breeding and biotechnology.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1007/s13205-023-03893-5.

摘要

未标注

在当前研究中,基因网络分析揭示了五种新型抗病蛋白,分别针对由稻瘟病菌(Magnaporthe oryzae)和白叶枯病菌(Xanthomonas oryzae pv. oryzae)引起的水稻稻瘟病(RB)和白叶枯病(BB)。进行了计算机模拟建模、优化和模型质量评估,以预测这五种蛋白质的最佳结构,并提交至ModelArchive以供未来使用。计算机注释表明,这五种蛋白质在信号转导途径中作为激酶、磷脂酶、转录因子和DNA修饰酶发挥作用。这些蛋白质定位于细胞核和质膜。系统发育分析显示了这五种蛋白质与抗病蛋白(XA21、OsTRX1、PLD和含HKD基序的蛋白质)之间的进化关系。这表明五种未知蛋白质与其进化相关蛋白质之间具有相似的抗病特性。此外,利用公开的微阵列数据对这些蛋白质进行基因表达谱分析,结果显示它们在稻瘟病菌和白叶枯病菌感染下的表达存在差异。本研究通过预测新型候选抗性蛋白,为培育抗病水稻品种提供了见解,这将有助于水稻育种者通过分子育种和生物技术提高作物产量,以应对未来的粮食安全问题。

补充信息

在线版本包含可在10.1007/s13205-023-03893-5获取的补充材料。

相似文献

2
Understanding the variability of rice bacterial blight pathogen, Xanthomonas oryzae pv. oryzae in Andhra Pradesh, India.
J Basic Microbiol. 2022 Feb;62(2):185-196. doi: 10.1002/jobm.202100406. Epub 2021 Dec 16.
5
The Rice Gene Confers Resistance to pv. in the Model Rice Kitaake Genetic Background.
Front Plant Sci. 2020 Feb 6;11:49. doi: 10.3389/fpls.2020.00049. eCollection 2020.
7
The germin-like protein OsGLP2-1 enhances resistance to fungal blast and bacterial blight in rice.
Plant Mol Biol. 2016 Nov;92(4-5):411-423. doi: 10.1007/s11103-016-0521-4. Epub 2016 Sep 15.
9
Functional analysis of African Xanthomonas oryzae pv. oryzae TALomes reveals a new susceptibility gene in bacterial leaf blight of rice.
PLoS Pathog. 2018 Jun 4;14(6):e1007092. doi: 10.1371/journal.ppat.1007092. eCollection 2018 Jun.
10

本文引用的文献

2
ggmsa: a visual exploration tool for multiple sequence alignment and associated data.
Brief Bioinform. 2022 Jul 18;23(4). doi: 10.1093/bib/bbac222.
4
Expression Atlas update: gene and protein expression in multiple species.
Nucleic Acids Res. 2022 Jan 7;50(D1):D129-D140. doi: 10.1093/nar/gkab1030.
5
PRGdb 4.0: an updated database dedicated to genes involved in plant disease resistance process.
Nucleic Acids Res. 2022 Jan 7;50(D1):D1483-D1490. doi: 10.1093/nar/gkab1087.
6
PANNZER-A practical tool for protein function prediction.
Protein Sci. 2022 Jan;31(1):118-128. doi: 10.1002/pro.4193. Epub 2021 Oct 14.
8
UniProt: the universal protein knowledgebase in 2021.
Nucleic Acids Res. 2021 Jan 8;49(D1):D480-D489. doi: 10.1093/nar/gkaa1100.
9
The InterPro protein families and domains database: 20 years on.
Nucleic Acids Res. 2021 Jan 8;49(D1):D344-D354. doi: 10.1093/nar/gkaa977.
10
QTG-Finder2: A Generalized Machine-Learning Algorithm for Prioritizing QTL Causal Genes in Plants.
G3 (Bethesda). 2020 Jul 7;10(7):2411-2421. doi: 10.1534/g3.120.401122.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验