Suppr超能文献

深度学习在放射学报告中的诊断确定性分类。

Classification of Diagnostic Certainty in Radiology Reports with Deep Learning.

机构信息

Department of Medical Informatics, Osaka University Graduate School of Medicine, Osaka, Japan.

Department of Transformative System for Medical Information, Osaka University Graduate School of Medicine, Osaka, Japan.

出版信息

Stud Health Technol Inform. 2024 Jan 25;310:569-573. doi: 10.3233/SHTI231029.

Abstract

A radiology report is prepared for communicating clinical information about observed abnormal structures and clinically important findings with referring clinicians. However, such observations and findings are often accompanied by ambiguous expressions, which can prevent clinicians from accurately interpreting the content of reports. To systematically assess the degree of diagnostic certainty for each observation and finding in a report, we defined an ordinal scale comprising five classes: definite, likely, may represent, unlikely, and denial. Furthermore, we applied a deep learning classification model to determine its applicability to in-house radiology reports. We trained and evaluated the model using 540 in-house chest computed tomography reports. The deep learning model achieved a micro F1-score of 97.61%, which indicated that our ordinal scale was suitable for measuring the diagnostic certainty of observations and findings in a report.

摘要

放射学报告用于向临床医生传达有关观察到的异常结构和具有临床重要性的发现的临床信息。然而,这些观察结果和发现通常伴随着模糊的表述,这可能会妨碍临床医生准确解读报告的内容。为了系统地评估报告中每项观察结果和发现的诊断确定性程度,我们定义了一个包含五个等级的有序尺度:明确、可能、可能代表、不太可能和否认。此外,我们应用了深度学习分类模型来确定其在内部放射学报告中的适用性。我们使用 540 份内部胸部计算机断层扫描报告对模型进行了训练和评估。深度学习模型的微 F1 得分为 97.61%,这表明我们的有序尺度适用于测量报告中观察结果和发现的诊断确定性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验