Suppr超能文献

基于 UHPLC-Q-Orbitrap MS/MS 脂质组指纹图谱和化学信息学鉴定鱿鱼圈的物种身份

Authentication of the species identity of squid rings using UHPLC-Q-Orbitrap MS/MS-based lipidome fingerprinting and chemoinformatics.

机构信息

National Reference Laboratory, ICAR-Central Institute of Fisheries Technology, Matsyapuri P.O., W. Island, Cochin 682029, India; Department of Chemical Oceanography, School of Marine Sciences, Cochin University of Science and Technology, Cochin 682016, India.

National Reference Laboratory, ICAR-Central Institute of Fisheries Technology, Matsyapuri P.O., W. Island, Cochin 682029, India.

出版信息

Food Chem. 2024 Jun 1;442:138525. doi: 10.1016/j.foodchem.2024.138525. Epub 2024 Jan 20.

Abstract

Species mislabeling of commercial loliginidae squid can undermine important conservation efforts and prevent consumers from making informed decisions. A comprehensive lipidomic fingerprint of Uroteuthis singhalensis, Uroteuthis edulis, and Uroteuthis duvauceli rings was established using high-resolution mass spectrometry-based lipidomics and chemoinformatics analysis. The principal component analysis showed a clear separation of sample groups, with RX and Q values of 0.97 and 0.85 for ESI and 0.96 and 0.86 for ESI, indicating a good model fit. The optimized OPLS-DA and PLS-DA models could discriminate the species identity of validation samples with 100 % accuracy. A total of 67 and 90 lipid molecules were putatively identified as biomarkers in ESI and ESI, respectively. Identified lipids, including PC(40:6), C14 sphingomyelin, PS(O-36:0), and PE(41:4), played an important role in species discrimination. For the first time, this study provides a detailed lipidomics profile of commercially important loliginidae squid and establishes a faster workflow for species authentication.

摘要

商业乌贼属鱿鱼的种属错误标记可能会破坏重要的保护工作,并阻止消费者做出明智的决策。使用基于高分辨率质谱的脂质组学和化学信息学分析,建立了 Uroteuthis singhalensis、Uroteuthis edulis 和 Uroteuthis duvauceli 环的综合脂质组指纹图谱。主成分分析显示样本组之间有明显的分离,ESI 的 RX 和 Q 值分别为 0.97 和 0.85,ESI 的 RX 和 Q 值分别为 0.96 和 0.86,表明模型拟合良好。优化的 OPLS-DA 和 PLS-DA 模型可以 100%准确地识别验证样本的物种身份。在 ESI 和 ESI 中分别鉴定出 67 种和 90 种脂质分子作为生物标志物。鉴定出的脂质,包括 PC(40:6)、C14 神经酰胺、PS(O-36:0)和 PE(41:4),在物种鉴别中发挥了重要作用。这是首次对商业上重要的乌贼属鱿鱼进行详细的脂质组学分析,并建立了更快的物种鉴定工作流程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验