González-Gutiérrez Carlos A, García-Pons David, Zueco David, Martínez-Pérez María José
Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza ES-50009, Spain.
Department of Physics and Applied Physics, University of Massachusetts, Lowell, Massachusetts 01854, United States.
ACS Nano. 2024 Feb 13;18(6):4717-4725. doi: 10.1021/acsnano.3c06704. Epub 2024 Jan 25.
Performing nanoscale scanning electron paramagnetic resonance (EPR) requires three essential ingredients: First, a static magnetic field together with field gradients to Zeeman split the electronic energy levels with spatial resolution; second, a radio frequency (rf) magnetic field capable of inducing spin transitions; finally, a sensitive detection method to quantify the energy absorbed by spins. This is usually achieved by combining externally applied magnetic fields with inductive coils or cavities, fluorescent defects, or scanning probes. Here, we theoretically propose the realization of an EPR scanning sensor merging all three characteristics into a single device: the vortex core stabilized in ferromagnetic thin-film discs. On one hand, the vortex ground state generates a significant static magnetic field and field gradients. On the other hand, the precessional motion of the vortex core around its equilibrium position produces a circularly polarized oscillating magnetic field, which is enough to produce spin transitions. Finally, the spin-magnon coupling broadens the vortex gyrotropic frequency, suggesting a direct measure of the presence of unpaired electrons. Moreover, the vortex core can be displaced by simply using external magnetic fields of a few mT, enabling EPR scanning microscopy with large spatial resolution. Our numerical simulations show that, by using low damping magnets, it is theoretically possible to detect single spins located on the disc's surface. Vortex nanocavities could also attain strong coupling to individual spin molecular qubits with potential applications to mediate qubit-qubit interactions or to implement qubit readout protocols.
进行纳米级扫描电子顺磁共振(EPR)需要三个基本要素:第一,一个静态磁场以及磁场梯度,用于通过塞曼效应以空间分辨率分裂电子能级;第二,一个能够诱导自旋跃迁的射频(rf)磁场;最后,一种灵敏的检测方法来量化自旋吸收的能量。这通常是通过将外部施加的磁场与感应线圈或腔体、荧光缺陷或扫描探针相结合来实现的。在此,我们从理论上提出实现一种EPR扫描传感器,将这三个特性整合到一个单一器件中:稳定在铁磁薄膜圆盘内的涡旋核。一方面,涡旋基态会产生显著的静态磁场和磁场梯度。另一方面,涡旋核围绕其平衡位置的进动运动会产生一个圆偏振振荡磁场,这足以产生自旋跃迁。最后,自旋 - 磁振子耦合拓宽了涡旋回转频率,这表明可以直接测量未配对电子的存在。此外,只需使用几毫特斯拉的外部磁场就能移动涡旋核,从而实现具有大空间分辨率的EPR扫描显微镜。我们的数值模拟表明,通过使用低阻尼磁体,理论上有可能检测位于圆盘表面的单个自旋。涡旋纳米腔还可以与单个自旋分子量子比特实现强耦合,在介导量子比特 - 量子比特相互作用或实现量子比特读出协议方面具有潜在应用。