Suppr超能文献

微谐振器及电子顺磁共振波谱仪支撑仪器的最新进展。

Recent advances in microresonators and supporting instrumentation for electron paramagnetic resonance spectroscopy.

机构信息

Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20740, USA.

Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA.

出版信息

Rev Sci Instrum. 2022 Oct 1;93(10):101101. doi: 10.1063/5.0097853.

Abstract

Electron paramagnetic resonance (EPR) spectroscopy characterizes the magnetic properties of paramagnetic materials at the atomic and molecular levels. Resonators are an enabling technology of EPR spectroscopy. Microresonators, which are miniaturized versions of resonators, have advanced inductive-detection EPR spectroscopy of mass-limited samples. Here, we provide our perspective of the benefits and challenges associated with microresonator use for EPR spectroscopy. To begin, we classify the application space for microresonators and present the conceptual foundation for analysis of resonator sensitivity. We summarize previous work and provide insight into the design and fabrication of microresonators as well as detail the requirements and challenges that arise in incorporating microresonators into EPR spectrometer systems. Finally, we provide our perspective on current challenges and prospective fruitful directions.

摘要

电子顺磁共振(EPR)光谱学在原子和分子水平上表征顺磁材料的磁性质。谐振器是 EPR 光谱学的一项使能技术。微谐振器是谐振器的小型化版本,它促进了对质量受限样品的感应检测 EPR 光谱学的发展。在这里,我们提供了对微谐振器在 EPR 光谱学中应用的相关益处和挑战的看法。首先,我们对微谐振器的应用空间进行了分类,并提出了用于分析谐振器灵敏度的概念基础。我们总结了以前的工作,并深入探讨了微谐振器的设计和制造,以及在将微谐振器纳入 EPR 光谱仪系统中所产生的需求和挑战。最后,我们对当前的挑战和有前景的方向提供了看法。

相似文献

3
New directions in electron paramagnetic resonance spectroscopy on molecular nanomagnets.
Top Curr Chem. 2012;321:199-234. doi: 10.1007/128_2011_303.
4
Sensitive surface loop-gap microresonators for electron spin resonance.
Rev Sci Instrum. 2010 Oct;81(10):104703. doi: 10.1063/1.3488365.
5
Use of multi-coil parallel-gap resonators for co-registration EPR/NMR imaging.
J Magn Reson. 2007 Jan;184(1):29-38. doi: 10.1016/j.jmr.2006.09.014. Epub 2006 Oct 6.
6
New ceramic EPR resonators with high dielectric permittivity.
J Magn Reson. 2008 Nov;195(1):52-9. doi: 10.1016/j.jmr.2008.08.015. Epub 2008 Sep 6.
8
230/115 GHz Electron Paramagnetic Resonance/Double Electron-Electron Resonance Spectroscopy.
Methods Enzymol. 2015;563:95-118. doi: 10.1016/bs.mie.2015.07.001. Epub 2015 Aug 21.
9
Pulsed electron spin resonance spectroscopy in the Purcell regime.
J Magn Reson. 2020 Jan;310:106662. doi: 10.1016/j.jmr.2019.106662. Epub 2019 Dec 4.
10
In Vivo Electron Paramagnetic Resonance: Radical Concepts for Translation to the Clinical Setting.
Antioxid Redox Signal. 2018 May 20;28(15):1341-1344. doi: 10.1089/ars.2017.7472. Epub 2018 Feb 12.

引用本文的文献

1
Continuous-flow electron spin resonance microfluidics device with sub-nanoliter sample volume.
J Magn Reson Open. 2025 Sep;24. doi: 10.1016/j.jmro.2025.100207. Epub 2025 Jul 9.
2
High-precision chemical quantum sensing in flowing monodisperse microdroplets.
Sci Adv. 2024 Dec 13;10(50):eadp4033. doi: 10.1126/sciadv.adp4033. Epub 2024 Dec 11.
3
Microfluidic-Integrated Chip Resonators for Electron Spin Sensing in Submicromolar, Submicroliter Solutions.
Anal Chem. 2024 Oct 29;96(43):17071-17077. doi: 10.1021/acs.analchem.4c00464. Epub 2024 Oct 15.
4
X-Band Single Chip Integrated Pulsed Electron Spin Resonance Microsystem.
Anal Chem. 2024 Sep 10;96(36):14516-14523. doi: 10.1021/acs.analchem.4c02769. Epub 2024 Aug 27.
5
Microwave field mapping for EPR-on-a-chip experiments.
Sci Adv. 2024 Aug 16;10(33):eado5467. doi: 10.1126/sciadv.ado5467.
6
7
Scanning Spin Probe Based on Magnonic Vortex Quantum Cavities.
ACS Nano. 2024 Feb 13;18(6):4717-4725. doi: 10.1021/acsnano.3c06704. Epub 2024 Jan 25.
8
Order-of-magnitude SNR improvement for high-field EPR spectrometers via 3D printed quasi-optical sample holders.
Sci Adv. 2023 Sep 22;9(38):eadi7412. doi: 10.1126/sciadv.adi7412. Epub 2023 Sep 20.

本文引用的文献

2
Rapid-scan electron paramagnetic resonance using an EPR-on-a-Chip sensor.
Magn Reson (Gott). 2021 Aug 25;2(2):673-687. doi: 10.5194/mr-2-673-2021. eCollection 2021.
3
Milliwatt three- and four-pulse double electron electron resonance for protein structure determination.
Phys Chem Chem Phys. 2022 May 25;24(20):12528-12540. doi: 10.1039/d1cp05508a.
4
Overhauser dynamic nuclear polarization (ODNP)-enhanced two-dimensional proton NMR spectroscopy at low magnetic fields.
Magn Reson (Gott). 2021;2(1):117-128. doi: 10.5194/mr-2-117-2021. Epub 2021 Apr 12.
5
Observation of localized magnetic plasmon skyrmions.
Nat Commun. 2022 Jan 10;13(1):8. doi: 10.1038/s41467-021-27710-w.
6
Plasmonic Metasurface Resonators to Enhance Terahertz Magnetic Fields for High-Frequency Electron Paramagnetic Resonance.
Small Methods. 2021 Sep;5(9):e2100376. doi: 10.1002/smtd.202100376. Epub 2021 Jul 29.
7
Superconducting micro-resonators for electron spin resonance - the good, the bad, and the future.
J Magn Reson. 2022 Jan;334:107102. doi: 10.1016/j.jmr.2021.107102. Epub 2021 Nov 2.
8
Single-electron spin resonance in a nanoelectronic device using a global field.
Sci Adv. 2021 Aug 13;7(33). doi: 10.1126/sciadv.abg9158. Print 2021 Aug.
9
Structural biology of RNA-binding proteins in the context of phase separation: What NMR and EPR can bring?
Curr Opin Struct Biol. 2021 Oct;70:132-138. doi: 10.1016/j.sbi.2021.07.001. Epub 2021 Aug 6.
10
Fe-S cofactors in the SARS-CoV-2 RNA-dependent RNA polymerase are potential antiviral targets.
Science. 2021 Jul 9;373(6551):236-241. doi: 10.1126/science.abi5224. Epub 2021 Jun 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验