文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Accurate and fast detection of tomatoes based on improved YOLOv5s in natural environments.

作者信息

Touko Mbouembe Philippe Lyonel, Liu Guoxu, Park Sungkyung, Kim Jae Ho

机构信息

Department of Electronics Engineering, Pusan National University, Busan, Republic of Korea.

School of Computer Engineering, Weifang University, Weifang, China.

出版信息

Front Plant Sci. 2024 Jan 11;14:1292766. doi: 10.3389/fpls.2023.1292766. eCollection 2023.


DOI:10.3389/fpls.2023.1292766
PMID:38273960
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10808679/
Abstract

Uneven illumination, obstruction of leaves or branches, and the overlapping of fruit significantly affect the accuracy of tomato detection by automated harvesting robots in natural environments. In this study, a proficient and accurate algorithm for tomato detection, called SBCS-YOLOv5s, is proposed to address this practical challenge. SBCS-YOLOv5s integrates the SE, BiFPN, CARAFE and Soft-NMS modules into YOLOv5s to enhance the feature expression ability of the model. First, the SE attention module and the C3 module were combined to form the C3SE module, replacing the original C3 module within the YOLOv5s backbone architecture. The SE attention module relies on modeling channel-wise relationships and adaptive re-calibration of feature maps to capture important information, which helps improve feature extraction of the model. Moreover, the SE module's ability to adaptively re-calibrate features can improve the model's robustness to variations in environmental conditions. Next, the conventional PANet multi-scale feature fusion network was replaced with an efficient, weighted Bi-directional Feature Pyramid Network (BiFPN). This adaptation aids the model in determining useful weights for the comprehensive fusion of high-level and bottom-level features. Third, the regular up-sampling operator is replaced by the Content Aware Reassembly of Features (CARAFE) within the neck network. This implementation produces a better feature map that encompasses greater semantic information. In addition, CARAFE's ability to enhance spatial detail helps the model discriminate between closely spaced fruits, especially for tomatoes that overlap heavily, potentially reducing the number of merging detections. Finally, for heightened identification of occluded and overlapped fruits, the conventional Non-Maximum-Suppression (NMS) algorithm was substituted with the Soft-NMS algorithm. Since Soft-NMS adopts a continuous weighting scheme, it is more adaptable to varying object sizes, improving the handling of small or large fruits in the image. Remarkably, this is carried out without introducing changes to the computational complexity. The outcome of the experiments showed that SBCS-YOLOv5s achieved a mean average precision (mAP (0.5:0.95)) of 87.7%, which is 3.5% superior to the original YOLOv5s model. Moreover, SBCS-YOLOv5s has a detection speed of 2.6 ms per image. Compared to other state-of-the-art detection algorithms, SBCS-YOLOv5s performed the best, showing tremendous promise for tomato detection in natural environments.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d048/10808679/76fbcb80d5a6/fpls-14-1292766-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d048/10808679/a9984a082e2e/fpls-14-1292766-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d048/10808679/298b38482aaa/fpls-14-1292766-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d048/10808679/bacff8b3d3b4/fpls-14-1292766-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d048/10808679/3b4da86b9107/fpls-14-1292766-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d048/10808679/6cf449d8ad05/fpls-14-1292766-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d048/10808679/e91f48430ec2/fpls-14-1292766-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d048/10808679/a69e01f2b6b3/fpls-14-1292766-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d048/10808679/1b8c470eccc2/fpls-14-1292766-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d048/10808679/4d631b94200b/fpls-14-1292766-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d048/10808679/76fbcb80d5a6/fpls-14-1292766-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d048/10808679/a9984a082e2e/fpls-14-1292766-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d048/10808679/298b38482aaa/fpls-14-1292766-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d048/10808679/bacff8b3d3b4/fpls-14-1292766-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d048/10808679/3b4da86b9107/fpls-14-1292766-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d048/10808679/6cf449d8ad05/fpls-14-1292766-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d048/10808679/e91f48430ec2/fpls-14-1292766-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d048/10808679/a69e01f2b6b3/fpls-14-1292766-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d048/10808679/1b8c470eccc2/fpls-14-1292766-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d048/10808679/4d631b94200b/fpls-14-1292766-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d048/10808679/76fbcb80d5a6/fpls-14-1292766-g010.jpg

相似文献

[1]
Accurate and fast detection of tomatoes based on improved YOLOv5s in natural environments.

Front Plant Sci. 2024-1-11

[2]
An efficient tomato-detection method based on improved YOLOv4-tiny model in complex environment.

Front Plant Sci. 2023-4-3

[3]
YOLOv5s-BiPCNeXt, a Lightweight Model for Detecting Disease in Eggplant Leaves.

Plants (Basel). 2024-8-19

[4]
Enhanced YOLOv5s-Based Algorithm for Industrial Part Detection.

Sensors (Basel). 2024-2-11

[5]
Steel Strip Surface Defect Detection Method Based on Improved YOLOv5s.

Biomimetics (Basel). 2024-1-3

[6]
Road surface crack detection based on improved YOLOv5s.

Math Biosci Eng. 2024-2-26

[7]
YOLOv5s-SA: Light-Weighted and Improved YOLOv5s for Sperm Detection.

Diagnostics (Basel). 2023-3-14

[8]
LPO-YOLOv5s: A Lightweight Pouring Robot Object Detection Algorithm.

Sensors (Basel). 2023-7-14

[9]
Track Fastener Defect Detection Model Based on Improved YOLOv5s.

Sensors (Basel). 2023-7-17

[10]
Lightweight aerial image object detection algorithm based on improved YOLOv5s.

Sci Rep. 2023-5-15

引用本文的文献

[1]
Research on underwater disease target detection method of inland waterway based on deep learning.

Sci Rep. 2025-4-23

[2]
Hyperparameter Optimization for Tomato Leaf Disease Recognition Based on YOLOv11m.

Plants (Basel). 2025-2-21

[3]
Evaluation of cucumber seed germination vigor under salt stress environment based on improved YOLOv8.

Front Plant Sci. 2024-9-13

[4]
Cucumber pathogenic spores' detection using the GCS-YOLOv8 network with microscopic images in natural scenes.

Plant Methods. 2024-8-21

[5]
EcoDetect-YOLO: A Lightweight, High-Generalization Methodology for Real-Time Detection of Domestic Waste Exposure in Intricate Environmental Landscapes.

Sensors (Basel). 2024-7-18

本文引用的文献

[1]
An efficient tomato-detection method based on improved YOLOv4-tiny model in complex environment.

Front Plant Sci. 2023-4-3

[2]
Diseases Detection of Occlusion and Overlapping Tomato Leaves Based on Deep Learning.

Front Plant Sci. 2021-12-10

[3]
YOLO-Tomato: A Robust Algorithm for Tomato Detection Based on YOLOv3.

Sensors (Basel). 2020-4-10

[4]
Single-Shot Convolution Neural Networks for Real-Time Fruit Detection Within the Tree.

Front Plant Sci. 2019-5-21

[5]
A Mature-Tomato Detection Algorithm Using Machine Learning and Color Analysis.

Sensors (Basel). 2019-4-30

[6]
Sigmoid-weighted linear units for neural network function approximation in reinforcement learning.

Neural Netw. 2018-1-11

[7]
Deep Count: Fruit Counting Based on Deep Simulated Learning.

Sensors (Basel). 2017-4-20

[8]
Industrial tomato lines: morphological properties and productivity.

Genet Mol Res. 2017-4-13

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索