文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于深度学习的番茄叶片遮挡与重叠病害检测

Diseases Detection of Occlusion and Overlapping Tomato Leaves Based on Deep Learning.

作者信息

Wang Xuewei, Liu Jun, Liu Guoxu

机构信息

Shandong Provincial University Laboratory for Protected Horticulture, Blockchain Laboratory of Agricultural Vegetables, Weifang University of Science and Technology, Weifang, China.

College of Information and Control Engineering, Weifang University, Weifang, China.

出版信息

Front Plant Sci. 2021 Dec 10;12:792244. doi: 10.3389/fpls.2021.792244. eCollection 2021.


DOI:10.3389/fpls.2021.792244
PMID:34956290
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8702556/
Abstract

In view of the existence of light shadow, branches occlusion, and leaves overlapping conditions in the real natural environment, problems such as slow detection speed, low detection accuracy, high missed detection rate, and poor robustness in plant diseases and pests detection technology arise. Based on YOLOv3-tiny network architecture, to reduce layer-by-layer loss of information during network transmission, and to learn from the idea of inverse-residual block, this study proposes a YOLOv3-tiny-IRB algorithm to optimize its feature extraction network, improve the gradient disappearance phenomenon during network deepening, avoid feature information loss, and realize network multilayer feature multiplexing and fusion. The network is trained by the methods of expanding datasets and multiscale strategies to obtain the optimal weight model. The experimental results show that when the method is tested on the self-built tomato diseases and pests dataset, and while ensuring the detection speed (206 frame rate per second), the mean Average precision (mAP) under three conditions: (a) deep separation, (b) debris occlusion, and (c) leaves overlapping are 98.3, 92.1, and 90.2%, respectively. Compared with the current mainstream object detection methods, the proposed method improves the detection accuracy of tomato diseases and pests under conditions of occlusion and overlapping in real natural environment.

摘要

鉴于现实自然环境中存在光影、树枝遮挡和树叶重叠等情况,植物病虫害检测技术出现了检测速度慢、检测精度低、漏检率高和鲁棒性差等问题。基于YOLOv3-tiny网络架构,为减少网络传输过程中信息的逐层损失,并借鉴逆残差块的思想,本研究提出了YOLOv3-tiny-IRB算法来优化其特征提取网络,改善网络加深过程中的梯度消失现象,避免特征信息丢失,实现网络多层特征复用与融合。通过扩充数据集和多尺度策略的方法对网络进行训练,以获得最优权重模型。实验结果表明,当该方法在自建的番茄病虫害数据集上进行测试时,在保证检测速度(每秒206帧)的情况下,在(a)深度分离、(b)碎片遮挡和(c)树叶重叠三种情况下的平均精度均值(mAP)分别为98.3%、92.1%和90.2%。与当前主流目标检测方法相比,该方法提高了在现实自然环境中遮挡和重叠情况下番茄病虫害的检测精度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bfb/8702556/db1f3d745659/fpls-12-792244-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bfb/8702556/4cfaa265d8b7/fpls-12-792244-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bfb/8702556/f2c78564da88/fpls-12-792244-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bfb/8702556/d0c36c7dfc40/fpls-12-792244-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bfb/8702556/08dd602f3deb/fpls-12-792244-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bfb/8702556/5b634384dfd8/fpls-12-792244-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bfb/8702556/2ba5ce25d2dc/fpls-12-792244-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bfb/8702556/4aac404e58b4/fpls-12-792244-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bfb/8702556/95e1dc8d6dae/fpls-12-792244-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bfb/8702556/db1f3d745659/fpls-12-792244-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bfb/8702556/4cfaa265d8b7/fpls-12-792244-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bfb/8702556/f2c78564da88/fpls-12-792244-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bfb/8702556/d0c36c7dfc40/fpls-12-792244-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bfb/8702556/08dd602f3deb/fpls-12-792244-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bfb/8702556/5b634384dfd8/fpls-12-792244-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bfb/8702556/2ba5ce25d2dc/fpls-12-792244-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bfb/8702556/4aac404e58b4/fpls-12-792244-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bfb/8702556/95e1dc8d6dae/fpls-12-792244-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bfb/8702556/db1f3d745659/fpls-12-792244-g009.jpg

相似文献

[1]
Diseases Detection of Occlusion and Overlapping Tomato Leaves Based on Deep Learning.

Front Plant Sci. 2021-12-10

[2]
Early real-time detection algorithm of tomato diseases and pests in the natural environment.

Plant Methods. 2021-4-23

[3]
Multiscale Parallel Algorithm for Early Detection of Tomato Gray Mold in a Complex Natural Environment.

Front Plant Sci. 2021-5-11

[4]
Tomato Diseases and Pests Detection Based on Improved Yolo V3 Convolutional Neural Network.

Front Plant Sci. 2020-6-16

[5]
Early recognition of tomato gray leaf spot disease based on MobileNetv2-YOLOv3 model.

Plant Methods. 2020-6-8

[6]
An efficient tomato-detection method based on improved YOLOv4-tiny model in complex environment.

Front Plant Sci. 2023-4-3

[7]
Multi-Scale Safety Helmet Detection Based on RSSE-YOLOv3.

Sensors (Basel). 2022-8-13

[8]
Detecting Pests From Light-Trapping Images Based on Improved YOLOv3 Model and Instance Augmentation.

Front Plant Sci. 2022-7-7

[9]
Real-Time Plant Leaf Counting Using Deep Object Detection Networks.

Sensors (Basel). 2020-12-3

[10]
A novel optimized tiny YOLOv3 algorithm for the identification of objects in the lawn environment.

Sci Rep. 2022-9-6

引用本文的文献

[1]
Optimization of a multi-environmental detection model for tomato growth point buds based on multi-strategy improved YOLOv8.

Sci Rep. 2025-7-16

[2]
BED-YOLO: An Enhanced YOLOv10n-Based Tomato Leaf Disease Detection Algorithm.

Sensors (Basel). 2025-5-2

[3]
YOLOv8 forestry pest recognition based on improved re-parametric convolution.

Front Plant Sci. 2025-3-11

[4]
DM-YOLO: improved YOLOv9 model for tomato leaf disease detection.

Front Plant Sci. 2025-2-11

[5]
Deep learning networks-based tomato disease and pest detection: a first review of research studies using real field datasets.

Front Plant Sci. 2024-10-25

[6]
SeptoSympto: a precise image analysis of Septoria tritici blotch disease symptoms using deep learning methods on scanned images.

Plant Methods. 2024-2-1

[7]
Accurate and fast detection of tomatoes based on improved YOLOv5s in natural environments.

Front Plant Sci. 2024-1-11

[8]
A Precise Image-Based Tomato Leaf Disease Detection Approach Using PLPNet.

Plant Phenomics. 2023-5-12

[9]
An efficient tomato-detection method based on improved YOLOv4-tiny model in complex environment.

Front Plant Sci. 2023-4-3

[10]
Improved YOLOX-Tiny network for detection of tobacco brown spot disease.

Front Plant Sci. 2023-2-14

本文引用的文献

[1]
Remote monitoring of Cydia pomonella adults among an assemblage of nontargets in sex pheromone-kairomone-baited smart traps.

Pest Manag Sci. 2021-9

[2]
Fusion of Deep Convolution and Shallow Features to Recognize the Severity of Wheat Head Blight.

Front Plant Sci. 2021-1-21

[3]
Tomato Diseases and Pests Detection Based on Improved Yolo V3 Convolutional Neural Network.

Front Plant Sci. 2020-6-16

[4]
Early recognition of tomato gray leaf spot disease based on MobileNetv2-YOLOv3 model.

Plant Methods. 2020-6-8

[5]
YOLO-Tomato: A Robust Algorithm for Tomato Detection Based on YOLOv3.

Sensors (Basel). 2020-4-10

[6]
Deep Learning-Based Phenotyping System With Glocal Description of Plant Anomalies and Symptoms.

Front Plant Sci. 2019-11-14

[7]
Cascade R-CNN: High Quality Object Detection and Instance Segmentation.

IEEE Trans Pattern Anal Mach Intell. 2021-5

[8]
Deep Learning for Plant Stress Phenotyping: Trends and Future Perspectives.

Trends Plant Sci. 2018-8-10

[9]
Focal Loss for Dense Object Detection.

IEEE Trans Pattern Anal Mach Intell. 2020-2

[10]
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.

IEEE Trans Pattern Anal Mach Intell. 2016-6-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索