Suppr超能文献

YOLOv5s-SA:用于精子检测的轻量级改进型YOLOv5s

YOLOv5s-SA: Light-Weighted and Improved YOLOv5s for Sperm Detection.

作者信息

Zhu Ronghua, Cui Yansong, Huang Jianming, Hou Enyu, Zhao Jiayu, Zhou Zhilin, Li Hao

机构信息

School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China.

SAS Medical Technology (Beijing) Co., Ltd., Changping District, Beijing 102200, China.

出版信息

Diagnostics (Basel). 2023 Mar 14;13(6):1100. doi: 10.3390/diagnostics13061100.

Abstract

Sperm detection performance is particularly critical for sperm motility tracking. However, there are a large number of non-sperm objects, sperm occlusion and poorly detailed texture features in semen images, which directly affect the accuracy of sperm detection. To solve the problem of false detection and missed detection in sperm detection, a multi-sperm target detection model, Yolov5s-SA, with an SA attention mechanism is proposed based on the YOLOv5s algorithm. Firstly, a depthwise, separable convolution structure is used to replace the partial convolution of the backbone network, which can ensure stable precision and reduce the number of model parameters. Secondly, a new multi-scale feature fusion module is designed to enhance the perception of feature information to supplement the positional information and high-resolution of the deep feature map. Finally, the SA attention mechanism is integrated into the neck network before the output of the feature map to enhance the correlation between the feature map channels and improve the fine-grained feature fusion ability of YOLOv5s. Experimental results show that compared with various YOLO algorithms, the proposed algorithm improves the detection accuracy and speed to a certain extent. Compared with the YOLOv3, YOLOv3-spp, YOLOv5s and YOLOv5m models, the average accuracy increases by 18.1%, 15.2%, 6.9% and 1.9%, respectively. It can effectively reduce the missed detection of occluded sperm and achieve lightweight and efficient multi-sperm target detection.

摘要

精子检测性能对于精子活力跟踪尤为关键。然而,精液图像中存在大量非精子物体、精子遮挡以及纹理特征细节不足的问题,这直接影响了精子检测的准确性。为了解决精子检测中的误检和漏检问题,基于YOLOv5s算法提出了一种带有SA注意力机制的多精子目标检测模型Yolov5s-SA。首先,采用深度可分离卷积结构替换主干网络的部分卷积,可确保精度稳定并减少模型参数数量。其次,设计了一种新的多尺度特征融合模块,以增强对特征信息的感知,补充深度特征图的位置信息和高分辨率。最后,在特征图输出前将SA注意力机制集成到颈部网络中,增强特征图通道之间的相关性,提高YOLOv5s的细粒度特征融合能力。实验结果表明,与各种YOLO算法相比,该算法在一定程度上提高了检测精度和速度。与YOLOv3、YOLOv3-spp、YOLOv5s和YOLOv5m模型相比,平均精度分别提高了18.1%、15.2%、6.9%和1.9%。它能有效减少被遮挡精子的漏检,实现轻量级且高效的多精子目标检测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4c2/10047898/44ba47a3167a/diagnostics-13-01100-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验