Cao Zifan, Wang Chenhui, Sun Yifan, Liu Menghui, Li Wei, Zhang Jinli, Fu Yan
School of Chemical Engineering & Technology, Tianjin University Tianjin 300350 China
School of Chemistry and Chemical Engineering, Shihezi University Shihezi 832003 China.
Chem Sci. 2023 Dec 21;15(4):1384-1392. doi: 10.1039/d3sc05312a. eCollection 2024 Jan 24.
Electrocatalytic hydrogenation of benzoic acid (BA) to cyclohexanecarboxylic acid (CCA) at ambient temperature and pressure has been recognized as a promising alternative to thermal hydrogenation since water is required as the hydrogen source. So far, only a few Pt-based electrocatalysts have been developed in acidic electrolyte. To overcome the limitations of reactant solubility and catalyst corrosion, herein, carbon fiber-supported Ru electrocatalysts with abundant Ru/RuO heterojunctions were fabricated cyclic electrodeposition between -0.8 and 1.1 V Ag/AgCl. In an alkaline environment, a Ru/RuO catalyst achieves an excellent ECH reactivity in terms of high BA conversion (100%) and selectivity towards CCA (100%) within 180 min at a current density of 200/3 mA cm, showing exceptional reusability and long-term stability. 1-Cyclohexenecarboxylic acid (CEA) was identified as the reaction intermediate, whose the selectivity is governed by the applied potential. Kinetic studies demonstrate that ECH of BA over Ru/RuO follows a Langmuir-Hinshelwood (L-H) mechanism. Raman spectroscopy and theoretical calculations reveal that the Ru/RuO interface enhances the adsorption strength of CEA, thereby facilitating the production of fully hydrogenated CCA. This work provides a deep understanding of the ECH pathway of BA in alkaline media, and gives a new methodology to fabricate heterostructure electrocatalysts.
在常温常压下,苯甲酸(BA)电催化加氢制备环己烷羧酸(CCA)被认为是热加氢的一种有前景的替代方法,因为该反应以水作为氢源。到目前为止,在酸性电解质中仅开发了少数几种铂基电催化剂。为了克服反应物溶解度和催化剂腐蚀的限制,本文通过在 -0.8至1.1 V(相对于Ag/AgCl)之间进行循环电沉积,制备了具有丰富Ru/RuO异质结的碳纤维负载钌电催化剂。在碱性环境中,Ru/RuO催化剂在200/3 mA cm的电流密度下,180分钟内实现了优异的电催化加氢反应活性,BA转化率高达100%,对CCA的选择性为100%,表现出出色的可重复使用性和长期稳定性。1-环己烯羧酸(CEA)被确定为反应中间体,其选择性受施加电位的控制。动力学研究表明,BA在Ru/RuO上的电催化加氢遵循Langmuir-Hinshelwood(L-H)机理。拉曼光谱和理论计算表明,Ru/RuO界面增强了CEA的吸附强度,从而促进了完全氢化的CCA的生成。这项工作深入理解了碱性介质中BA的电催化加氢途径,并提供了一种制备异质结构电催化剂的新方法。