Zhang Xiaoyu Baohua, Xia Lixue, Zhao Guoqiang, Zhang Bingxing, Chen Yaping, Chen Jian, Gao Mingxia, Jiang Yinzhu, Liu Yongfeng, Pan Hongge, Sun Wenping
School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China.
Zhejiang Carbon Neutral Innovation Institute and College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
Adv Mater. 2023 Mar;35(9):e2208821. doi: 10.1002/adma.202208821. Epub 2023 Jan 1.
The slow hydrogen oxidation reaction (HOR) kinetics under alkaline conditions remain a critical challenge for the practical application of alkaline exchange membrane fuel cells. Herein, Ru/RuO in-plane heterostructures are designed with abundant active Ru-RuO interface domains as efficient electrocatalysts for the HOR in alkaline media. The experimental and theoretical results demonstrate that interfacial Ru and RuO domains at Ru-RuO interfaces are the optimal H and OH adsorption sites, respectively, endowing the well-defined Ru(100)/RuO (200) interface as the preferential region for fast alkaline hydrogen electrocatalysis. More importantly, the metallic Ru domains become electron deficient due to the strong interaction with RuO domains and show substantially improved inoxidizability, which is vital to maintain durable HOR electrocatalytic activity. The optimal Ru/RuO heterostructured electrocatalyst exhibits impressive alkaline HOR activity with an exchange current density of 8.86 mA cm and decent durability. The exceptional electrocatalytic performance of Ru/RuO in-plane heterostructure can be attributed to the robust and multifunctional Ru-RuO interfaces endowed by the unique metal-metal oxide domains.
碱性条件下缓慢的氢氧化反应(HOR)动力学仍然是碱性交换膜燃料电池实际应用中的一个关键挑战。在此,设计了具有丰富活性Ru-RuO界面域的Ru/RuO面内异质结构,作为碱性介质中HOR的高效电催化剂。实验和理论结果表明,Ru-RuO界面处的界面Ru和RuO域分别是最佳的H和OH吸附位点,赋予明确的Ru(100)/RuO(200)界面作为快速碱性氢电催化的优先区域。更重要的是,由于与RuO域的强相互作用,金属Ru域变得缺电子,并表现出显著提高的抗氧化性,这对于维持持久的HOR电催化活性至关重要。最佳的Ru/RuO异质结构电催化剂表现出令人印象深刻的碱性HOR活性,交换电流密度为8.86 mA cm,并且具有良好的耐久性。Ru/RuO面内异质结构优异的电催化性能可归因于独特的金属-金属氧化物域赋予的强大且多功能的Ru-RuO界面。