Yao Lanhong, Zhang Zheyuan, Demir Ugur, Keles Elif, Vendrami Camila, Agarunov Emil, Bolan Candice, Schoots Ivo, Bruno Marc, Keswani Rajesh, Miller Frank, Gonda Tamas, Yazici Cemal, Tirkes Temel, Wallace Michael, Spampinato Concetto, Bagci Ulas
Department of Radiology, Northwestern University, Chicago IL 60611, USA.
NYU Langone Health, New York, NY 10016.
Mach Learn Med Imaging. 2023 Oct;14349:134-143. doi: 10.1007/978-3-031-45676-3_14. Epub 2023 Oct 15.
Intraductal Papillary Mucinous Neoplasm (IPMN) cysts are pre-malignant pancreas lesions, and they can progress into pancreatic cancer. Therefore, detecting and stratifying their risk level is of ultimate importance for effective treatment planning and disease control. However, this is a highly challenging task because of the diverse and irregular shape, texture, and size of the IPMN cysts as well as the pancreas. In this study, we propose a novel computer-aided diagnosis pipeline for IPMN risk classification from multi-contrast MRI scans. Our proposed analysis framework includes an efficient volumetric self-adapting segmentation strategy for pancreas delineation, followed by a newly designed deep learning-based classification scheme with a radiomics-based predictive approach. We test our proposed decision-fusion model in multi-center data sets of 246 multi-contrast MRI scans and obtain superior performance to the state of the art (SOTA) in this field. Our ablation studies demonstrate the significance of both radiomics and deep learning modules for achieving the new SOTA performance compared to international guidelines and published studies (81.9% vs 61.3% in accuracy). Our findings have important implications for clinical decision-making. In a series of rigorous experiments on multi-center data sets (246 MRI scans from five centers), we achieved unprecedented performance (81.9% accuracy). The code is available upon publication.
导管内乳头状黏液性肿瘤(IPMN)囊肿是胰腺的癌前病变,它们可能会发展成胰腺癌。因此,检测并对其风险水平进行分层对于有效的治疗规划和疾病控制至关重要。然而,这是一项极具挑战性的任务,因为IPMN囊肿以及胰腺的形状、质地和大小各不相同且不规则。在本研究中,我们提出了一种用于从多对比MRI扫描中对IPMN风险进行分类的新型计算机辅助诊断流程。我们提出的分析框架包括一种用于胰腺勾勒的高效体积自适应分割策略,随后是一种新设计的基于深度学习的分类方案以及基于放射组学的预测方法。我们在包含246次多对比MRI扫描的多中心数据集中测试了我们提出的决策融合模型,并取得了优于该领域现有技术水平(SOTA)的性能。我们的消融研究表明,与国际指南和已发表的研究相比,放射组学和深度学习模块对于实现新的SOTA性能都具有重要意义(准确率分别为81.9%和61.3%)。我们的研究结果对临床决策具有重要意义。在对多中心数据集(来自五个中心的246次MRI扫描)进行的一系列严格实验中,我们取得了前所未有的性能(准确率81.9%)。代码将在发表后提供。