Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:475-479. doi: 10.1109/EMBC48229.2022.9871547.
Early detection of precancerous cysts or neoplasms, i.e., Intraductal Papillary Mucosal Neoplasms (IPMN), in pancreas is a challenging and complex task, and it may lead to a more favourable outcome. Once detected, grading IPMNs accurately is also necessary, since low-risk IPMNs can be under surveillance program, while high-risk IPMNs have to be surgically resected before they turn into cancer. Current standards (Fukuoka and others) for IPMN classification show significant intra- and inter-operator variability, beside being error-prone, making a proper diagnosis unreliable. The established progress in artificial intelligence, through the deep learning paradigm, may provide a key tool for an effective support to medical decision for pancreatic cancer. In this work, we follow this trend, by proposing a novel AI-based IPMN classifier that leverages the recent success of transformer networks in generalizing across a wide variety of tasks, including vision ones. We specifically show that our transformer-based model exploits pre-training better than standard convolutional neural networks, thus supporting the sought architectural universalism of transformers in vision, including the medical image domain and it allows for a better interpretation of the obtained results.
早期发现癌前囊肿或肿瘤,即胰腺内导管乳头状黏膜肿瘤(IPMN),是一项具有挑战性和复杂性的任务,它可能会带来更有利的结果。一旦检测到,准确地对 IPMN 进行分级也很有必要,因为低风险的 IPMN 可以进行监测,而高风险的 IPMN 在癌变之前必须进行手术切除。目前的 IPMN 分类标准(福冈标准等)显示出显著的操作者内和操作者间的变异性,除了容易出错之外,还使得正确的诊断变得不可靠。人工智能的现有进展,通过深度学习范例,可以为胰腺癌的医疗决策提供有效的支持。在这项工作中,我们遵循这一趋势,提出了一种新的基于人工智能的 IPMN 分类器,该分类器利用了转换器网络在广泛的任务中进行泛化的最新成功,包括视觉任务。我们特别表明,我们基于转换器的模型比标准卷积神经网络更好地利用了预训练,从而支持了转换器在视觉领域的所需架构普遍性,包括医学图像领域,并允许对获得的结果进行更好的解释。