Suppr超能文献

利用最大熵模型的机器学习预测气候变化情景下[具体物种或事物未给出]的潜在分布。

Predicting the Potential Distribution of under Climate Change Scenarios Using Machine Learning of a Maximum Entropy Model.

作者信息

Xiao Fengjin, Liu Qiufeng, Qin Yun

机构信息

National Climate Center, Chinese Meteorological Administration, Beijing 100081, China.

出版信息

Biology (Basel). 2023 Dec 20;13(1):0. doi: 10.3390/biology13010003.

Abstract

is a second-class protected plant of national significance in China that is known for its growth in desert and semidesert regions, where it serves as a desert ecosystem guardian by playing a substantial role in maintaining ecosystem structure and function. The changing global climate has substantially altered the growth conditions for . This study focuses on identifying the key variables influencing the distribution of and determining their potential impact on future distribution. We employed the Maxent model to evaluate the current climate suitability for distribution and to project its future changes across various shared socioeconomic pathway (SSP) scenarios. Our findings indicate that precipitation during the warmest quarter and precipitation during the wettest month are the most influential variables affecting the potentially suitable habitats of . The highly suitable habitat area for currently covers approximately 489,800 km. The Maxent model forecasts an expansion of highly suitable habitat under all future SSP scenarios, with the extent of unsuitable areas increasing with greater global warming. The increased highly suitable habitats range from 40% (SSP585) to 80% (SSP126) by the 2070s (2060-2080). Furthermore, our results indicate a continued expansion of desertification areas due to global warming, highlighting the significant role of in maintaining desert ecosystem stability. This study offers valuable insights into biodiversity preservation and ecological protection in the context of future climate change scenarios.

摘要

是中国国家重点二级保护植物,以生长在沙漠和半沙漠地区而闻名,在这些地区,它通过在维持生态系统结构和功能方面发挥重要作用,成为沙漠生态系统的守护者。全球气候变化已极大地改变了的生长条件。本研究的重点是确定影响分布的关键变量,并确定它们对未来分布的潜在影响。我们使用Maxent模型来评估当前气候对分布的适宜性,并预测其在各种共享社会经济路径(SSP)情景下的未来变化。我们的研究结果表明,最暖季度降水量和最湿月降水量是影响潜在适宜栖息地的最具影响力的变量。目前的高度适宜栖息地面积约为489,800平方公里。Maxent模型预测在所有未来SSP情景下高度适宜栖息地都会扩大,随着全球变暖加剧不适宜区域的范围也会增加。到2070年代(2060 - 2080年),高度适宜栖息地增加的范围从40%(SSP585)到80%(SSP126)。此外,我们的结果表明由于全球变暖沙漠化区域将持续扩大,凸显了在维持沙漠生态系统稳定性方面的重要作用。本研究为未来气候变化情景下的生物多样性保护和生态保护提供了有价值的见解。

需注意原文中部分植物名称缺失,翻译时保留了英文表述。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95cf/11154351/e015a1ad5bba/biology-13-00003-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验