Suppr超能文献

法医场景中的指纹识别。

Fingerprint Recognition in Forensic Scenarios.

作者信息

Martins Nuno, Silva José Silvestre, Bernardino Alexandre

机构信息

Portuguese Military Academy, 1169-203 Lisbon, Portugal.

Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal.

出版信息

Sensors (Basel). 2024 Jan 20;24(2):664. doi: 10.3390/s24020664.

Abstract

Fingerprints are unique patterns used as biometric keys because they allow an individual to be unambiguously identified, making their application in the forensic field a common practice. The design of a system that can match the details of different images is still an open problem, especially when applied to large databases or, to real-time applications in forensic scenarios using mobile devices. Fingerprints collected at a crime scene are often manually processed to find those that are relevant to solving the crime. This work proposes an efficient methodology that can be applied in real time to reduce the manual work in crime scene investigations that consumes time and human resources. The proposed methodology includes four steps: (i) image pre-processing using oriented Gabor filters; (ii) the extraction of minutiae using a variant of the Crossing Numbers method which include a novel ROI definition through convex hull and erosion followed by replacing two or more very close minutiae with an average minutiae; (iii) the creation of a model that represents each minutia through the characteristics of a set of polygons including neighboring minutiae; (iv) the individual search of a match for each minutia in different images using metrics on the absolute and relative errors. While in the literature most methodologies look to validate the entire fingerprint model, connecting the minutiae or using minutiae triplets, we validate each minutia individually using n-vertex polygons whose vertices are neighbor minutiae that surround the reference. Our method also reveals robustness against false minutiae since several polygons are used to represent the same minutia, there is a possibility that even if there are false minutia, the true polygon is present and identified; in addition, our method is immune to rotations and translations. The results show that the proposed methodology can be applied in real time in standard hardware implementation, with images of arbitrary orientations.

摘要

指纹是用作生物识别密钥的独特图案,因为它们能够明确识别个人身份,这使得它们在法医领域的应用成为一种常见做法。设计一个能够匹配不同图像细节的系统仍然是一个未解决的问题,特别是当应用于大型数据库或使用移动设备的法医场景中的实时应用时。在犯罪现场采集的指纹通常需要人工处理,以找到与破案相关的指纹。这项工作提出了一种高效的方法,可以实时应用,以减少犯罪现场调查中耗费时间和人力资源的人工工作。所提出的方法包括四个步骤:(i)使用定向Gabor滤波器进行图像预处理;(ii)使用交叉数方法的变体提取细节特征,该方法包括通过凸包和腐蚀定义一个新颖的感兴趣区域(ROI),然后用平均细节特征替换两个或更多非常接近的细节特征;(iii)创建一个模型,通过一组包括相邻细节特征的多边形的特征来表示每个细节特征;(iv)使用绝对误差和相对误差的度量,在不同图像中为每个细节特征单独搜索匹配项。虽然在文献中大多数方法都试图验证整个指纹模型,连接细节特征或使用细节特征三元组,但我们使用n顶点多边形单独验证每个细节特征,其顶点是围绕参考细节特征的相邻细节特征。我们的方法还显示出对假细节特征的鲁棒性,因为使用多个多边形来表示同一个细节特征,即使存在假细节特征,真实多边形也有可能存在并被识别;此外,我们的方法不受旋转和平移的影响。结果表明,所提出的方法可以在标准硬件实现中实时应用,处理任意方向的图像。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87ae/10819264/9ebb109a2535/sensors-24-00664-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验