Cai Tong, Shi Wenwu, Wu Rongzhen, Chu Chun, Jin Na, Wang Junyu, Zheng Weiwei, Wang Xinzhong, Chen Ou
Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States.
Institute of Information Technology, Shenzhen Institute of Information Technology, Shenzhen 518172, China.
J Am Chem Soc. 2024 Feb 7;146(5):3200-3209. doi: 10.1021/jacs.3c11164. Epub 2024 Jan 26.
The introduction of lanthanide ions (Ln) into all-inorganic lead-free halide perovskites has captured significant attention in optoelectronic applications. However, doping Ln ions into heterometallic halide layered double perovskite (LDP) nanocrystals (NCs) and their associated doping mechanisms remain unexplored. Herein, we report the first colloidal synthesis of Ln (Yb, Er)-doped LDP NCs utilizing a modified hot-injection method. The resulting NCs exhibit efficient near-infrared (NIR) photoluminescence in both NIR-I and NIR-II regions, achieved through energy transfer down-conversion mechanisms. Density functional theory calculations reveal that Ln dopants preferentially occupy the Sb cation positions, resulting in a disruption of local site symmetry of the LDP lattices. By leveraging sensitizations of intermediate energy levels, we delved into a series of Ln-doped CsM(II)SbCl (M(II): Cd or Mn) LDP NCs via co-doping strategies. Remarkably, we observe a brightening effect of the predark states of Er dopant in the Er-doped CsM(II)SbCl LDP NCs owing to the Mn component acting as an intermediate energy bridge. This study not only advances our understanding of energy transfer mechanisms in doped NCs but also propels all-inorganic LDP NCs for a wider range of optoelectronic applications.
将镧系离子(Ln)引入全无机无铅卤化物钙钛矿在光电应用中引起了广泛关注。然而,将Ln离子掺杂到异金属卤化物层状双钙钛矿(LDP)纳米晶体(NCs)中及其相关的掺杂机制仍未得到探索。在此,我们报道了利用改进的热注入法首次胶体合成Ln(Yb、Er)掺杂的LDP NCs。通过能量转移下转换机制,所得NCs在近红外I和近红外II区域均表现出高效的近红外(NIR)光致发光。密度泛函理论计算表明,Ln掺杂剂优先占据Sb阳离子位置,导致LDP晶格的局部位点对称性被破坏。通过利用中间能级的敏化作用,我们通过共掺杂策略深入研究了一系列Ln掺杂的CsM(II)SbCl(M(II):Cd或Mn)LDP NCs。值得注意的是,由于Mn组分作为中间能量桥,我们在掺Er的CsM(II)SbCl LDP NCs中观察到了Er掺杂剂预暗态的增亮效应。这项研究不仅增进了我们对掺杂NCs中能量转移机制的理解,也推动了全无机LDP NCs在更广泛的光电应用中的发展。