Suppr超能文献

betAS:使用贝塔分布进行直观的差异剪接分析和可视化。

betAS: intuitive analysis and visualization of differential alternative splicing using beta distributions.

机构信息

Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal.

European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom.

出版信息

RNA. 2024 Mar 18;30(4):337-353. doi: 10.1261/rna.079764.123.

Abstract

Next-generation RNA sequencing allows alternative splicing (AS) quantification with unprecedented resolution, with the relative inclusion of an alternative sequence in transcripts being commonly quantified by the proportion of reads supporting it as percent spliced-in (PSI). However, PSI values do not incorporate information about precision, proportional to the respective AS events' read coverage. Beta distributions are suitable to quantify inclusion levels of alternative sequences, using reads supporting their inclusion and exclusion as surrogates for the two distribution shape parameters. Each such beta distribution has the PSI as its mean value and is narrower when the read coverage is higher, facilitating the interpretability of its precision when plotted. We herein introduce a computational pipeline, based on beta distributions accurately modeling PSI values and their precision, to quantitatively and visually compare AS between groups of samples. Our methodology includes a differential splicing significance metric that compromises the magnitude of intergroup differences, the estimation uncertainty in individual samples, and the intragroup variability, being therefore suitable for multiple-group comparisons. To make our approach accessible and clear to both noncomputational and computational biologists, we developed betAS, an interactive web app and user-friendly R package for visual and intuitive differential splicing analysis from read count data.

摘要

下一代 RNA 测序以空前的分辨率允许对可变剪接 (AS) 进行定量,通常通过支持它的读取比例来量化替代序列的相对包含度,作为插入百分比 (PSI)。然而,PSI 值不包含关于精度的信息,与各自的 AS 事件的读取覆盖率成比例。贝塔分布适合于使用支持其包含和排除的读取来量化替代序列的包含水平,作为两个分布形状参数的替代。每个这样的贝塔分布都将 PSI 作为其平均值,并且当读取覆盖率较高时,它会更窄,从而便于在绘制时解释其精度。我们在此引入了一种基于贝塔分布的计算管道,该分布准确地对 PSI 值及其精度进行建模,以定量和直观地比较样本组之间的 AS。我们的方法包括一种差异剪接显著性度量,该度量综合考虑了组间差异的大小、个体样本的估计不确定性以及组内变异性,因此适用于多组比较。为了使我们的方法对非计算和计算生物学家都具有可访问性和清晰性,我们开发了 betAS,这是一个交互式网络应用程序和用户友好的 R 包,用于从读取计数数据进行直观的差异剪接分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba91/10946425/0ad5aaec813f/337f01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验