Guo Wei, Li Bing, Xu Wencai, Cheng Chen, Qiu Chengyu, Sam Sai-Kit, Zhang Jiang, Teng Xinzhi, Meng Lingguang, Zheng Xiaoli, Wang Yuan, Lou Zhaoyang, Mao Ronghu, Lei Hongchang, Zhang Yuanpeng, Zhou Ta, Li Aijia, Cai Jing, Ge Hong
Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, 127 Dong Ming Rd, Zhengzhou, Henan Province, China.
Department of Medical Informatics, Nantong University, Nantong, China.
J Cancer Res Clin Oncol. 2024 Jan 27;150(2):39. doi: 10.1007/s00432-023-05520-5.
This study aimed to develop a prediction model for esophageal fistula (EF) in esophageal cancer (EC) patients treated with intensity-modulated radiation therapy (IMRT), by integrating multi-omics features from multiple volumes of interest (VOIs).
We retrospectively analyzed pretreatment planning computed tomographic (CT) images, three-dimensional dose distributions, and clinical factors of 287 EC patients. Nine groups of features from different combination of omics [Radiomics (R), Dosiomics (D), and RD (the combination of R and D)], and VOIs [esophagus (ESO), gross tumor volume (GTV), and EG (the combination of ESO and GTV)] were extracted and separately selected by unsupervised (analysis of variance (ANOVA) and Pearson correlation test) and supervised (Student T test) approaches. The final model performance was evaluated using five metrics: average area under the receiver-operator-characteristics curve (AUC), accuracy, precision, recall, and F1 score.
For multi-omics using RD features, the model performance in EG model shows: AUC, 0.817 ± 0.031; 95% CI 0.805, 0.825; p < 0.001, which is better than single VOI (ESO or GTV).
Integrating multi-omics features from multi-VOIs enables better prediction of EF in EC patients treated with IMRT. The incorporation of dosiomics features can enhance the model performance of the prediction.
本研究旨在通过整合来自多个感兴趣体积(VOI)的多组学特征,开发一种用于接受调强放射治疗(IMRT)的食管癌(EC)患者食管瘘(EF)的预测模型。
我们回顾性分析了287例EC患者的治疗前计划计算机断层扫描(CT)图像、三维剂量分布和临床因素。从组学的不同组合[影像组学(R)、剂量组学(D)以及RD(R和D的组合)]和VOI[食管(ESO)、大体肿瘤体积(GTV)以及EG(ESO和GTV的组合)]中提取九组特征,并分别通过无监督(方差分析(ANOVA)和Pearson相关性检验)和有监督(Student T检验)方法进行选择。使用五个指标评估最终模型性能:受试者操作特征曲线下的平均面积(AUC)、准确性、精确性、召回率和F1分数。
对于使用RD特征的多组学,EG模型中的模型性能显示:AUC为0.817±0.031;95%置信区间为0.805,0.825;p<0.001,优于单个VOI(ESO或GTV)。
整合来自多个VOI的多组学特征能够更好地预测接受IMRT治疗的EC患者的EF。纳入剂量组学特征可以提高预测的模型性能。