Radiotherapy Center, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, 315000, China.
Radiat Oncol. 2024 Jun 8;19(1):72. doi: 10.1186/s13014-024-02462-1.
To integrate radiomics and dosiomics features from multiple regions in the radiation pneumonia (RP grade ≥ 2) prediction for esophageal cancer (EC) patients underwent radiotherapy (RT).
Total of 143 EC patients in the authors' hospital (training and internal validation: 70%:30%) and 32 EC patients from another hospital (external validation) underwent RT from 2015 to 2022 were retrospectively reviewed and analyzed. Patients were dichotomized as positive (RP+) or negative (RP-) according to CTCAE V5.0. Models with radiomics and dosiomics features extracted from single region of interest (ROI), multiple ROIs and combined models were constructed and evaluated. A nomogram integrating radiomics score (Rad_score), dosiomics score (Dos_score), clinical factors, dose-volume histogram (DVH) factors, and mean lung dose (MLD) was also constructed and validated.
Models with Rad_score_Lung&Overlap and Dos_score_Lung&Overlap achieved a better area under curve (AUC) of 0.818 and 0.844 in the external validation in comparison with radiomics and dosiomics models with features extracted from single ROI. Combining four radiomics and dosiomics models using support vector machine (SVM) improved the AUC to 0.854 in the external validation. Nomogram integrating Rad_score, and Dos_score with clinical factors, DVH factors, and MLD further improved the RP prediction AUC to 0.937 and 0.912 in the internal and external validation, respectively.
CT-based RP prediction model integrating radiomics and dosiomics features from multiple ROIs outperformed those with features from a single ROI with increased reliability for EC patients who underwent RT.
为了整合食管癌(EC)患者放射治疗(RT)后放射性肺炎(RP 分级≥2)预测中来自多个区域的放射组学和剂量组学特征。
回顾性分析了作者医院的 143 例(训练和内部验证:70%:30%)和另一医院的 32 例(外部验证)接受 RT 的 EC 患者。根据 CTCAE V5.0 将患者分为阳性(RP+)或阴性(RP-)。构建并评估了从单个感兴趣区域(ROI)、多个 ROI 以及联合模型中提取放射组学和剂量组学特征的模型。还构建并验证了一个整合放射组学评分(Rad_score)、剂量组学评分(Dos_score)、临床因素、剂量体积直方图(DVH)因素和平均肺剂量(MLD)的列线图。
与从单个 ROI 提取特征的放射组学和剂量组学模型相比,Rad_score_Lung&Overlap 和 Dos_score_Lung&Overlap 模型在外部验证中的曲线下面积(AUC)分别为 0.818 和 0.844,表现更佳。使用支持向量机(SVM)结合四个放射组学和剂量组学模型进一步将 AUC 提高到 0.854 在外部验证中。列线图将 Rad_score 和 Dos_score 与临床因素、DVH 因素和 MLD 相结合,进一步将 RP 预测 AUC 提高到内部和外部验证中的 0.937 和 0.912。
与从单个 ROI 提取特征的模型相比,基于 CT 的整合放射组学和剂量组学特征的 RP 预测模型在预测接受 RT 的 EC 患者的放射性肺炎方面表现更优,可靠性更高。