Suppr超能文献

基于复杂基因特征富集分析预测小细胞肺癌细胞系的药物反应。

Predicting drug response of small cell lung cancer cell lines based on enrichment analysis of complex gene signatures.

机构信息

Cancer Genomics and Epigenetics Core Group, Hungarian Center of Excellence for Molecular Medicine (HCEMM), Szeged, Hungary.

Cancer Genomics and Epigenetics Core Group, Hungarian Center of Excellence for Molecular Medicine (HCEMM), Szeged, Hungary.

出版信息

J Biotechnol. 2024 Mar 10;383:86-93. doi: 10.1016/j.jbiotec.2024.01.010. Epub 2024 Jan 26.

Abstract

Advances in the field of genomics and transcriptomics have enabled researchers to identify gene signatures related to development and treatment of Small Cell Lung Cancer. In most cases, complex gene expression patterns are identified, comprising of genes with differential behavior. Most tools use single-genes as predictors of drug response, with only limited options for multi-gene use. Here we examine the potential of predicting drug response using these complex gene expression signatures by employing clustering and signal enrichment in Small Cell Lung Cancer. Our results demonstrate clustering genes from complex expression patterns helps identify differential activity of gene groups with alternate function which can then be used to predict drug response.

摘要

基因组学和转录组学领域的进展使研究人员能够鉴定与小细胞肺癌的发生和治疗相关的基因特征。在大多数情况下,会确定复杂的基因表达模式,其中包含具有差异行为的基因。大多数工具都使用单基因作为药物反应的预测因子,而多基因的使用选项有限。在这里,我们通过在小细胞肺癌中进行聚类和信号富集来研究使用这些复杂基因表达特征来预测药物反应的潜力。我们的结果表明,聚类来自复杂表达模式的基因有助于识别具有不同功能的基因组的差异活性,然后可以将其用于预测药物反应。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验