Suppr超能文献

生存特征:利用基因表达特征揭示肺神经内分泌肿瘤的异质性。

SurvSig: Harnessing gene expression signatures to uncover heterogeneity in lung neuroendocrine neoplasms.

作者信息

Nemes Kolos, Fűr Gabriella Mihalekné, Benő Alexandra, Schultz Christopher W, Topolcsányi Petronella, Magó Éva, Desai Parth, Takahashi Nobuyuki, Aladjem Mirit I, Reinhold William, Pommier Yves, Thomas Anish, Pongor Lorinc S

机构信息

HCEMM Cancer Genomics and Epigenetics Core Group, Szeged, Hungary.

Doctoral School of Interdisciplinary Medicine, University of Szeged, Szeged, Hungary.

出版信息

Comput Struct Biotechnol J. 2025 Jun 6;27:2574-2583. doi: 10.1016/j.csbj.2025.06.010. eCollection 2025.

Abstract

The advances in the field of cancer genomics have enabled researchers and clinicians to identify altered pathways and regulatory networks that differentiate subtypes manifesting as differential phenotypes of lung neuroendocrine neoplasms (NENs). The clinical heterogeneity observed among lung NEN subtypes reflects underlying biological distinctions, including differential mutation patterns, epigenetic changes and immune microenvironment activities. Although in many cases only a handful of underlying genes are used to differentiate patients, broader gene signatures might result in finer separation and help identify patients with differential survival. Lung NENs are vastly underrepresented in pan-cancer studies, resulting in lacking options to explore datasets. To this end, we developed a freely available website (https://survsig.hcemm.eu/) which allows users to upload potential genes of interest, perform patient clustering, compare survival and explore gene expression signature of lung NENs. Leveraging these biological differences enhances the accuracy of gene expression-based prognostic classifiers like SurvSig.

摘要

癌症基因组学领域的进展使研究人员和临床医生能够识别出改变的信号通路和调控网络,这些通路和网络区分了表现为肺神经内分泌肿瘤(NENs)不同表型的亚型。在肺NEN亚型中观察到的临床异质性反映了潜在的生物学差异,包括不同的突变模式、表观遗传变化和免疫微环境活动。虽然在许多情况下仅使用少数潜在基因来区分患者,但更广泛的基因特征可能会实现更精细的区分,并有助于识别生存期不同的患者。肺NENs在泛癌研究中的代表性严重不足,导致缺乏探索数据集的选择。为此,我们开发了一个免费网站(https://survsig.hcemm.eu/),用户可以上传感兴趣的潜在基因,进行患者聚类,比较生存率,并探索肺NENs的基因表达特征。利用这些生物学差异可提高基于基因表达的预后分类器(如SurvSig)的准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验