Suppr超能文献

假单胞菌科短光、氧、电压(LOV)蛋白家族中保守的信号转导机制和暗恢复动力学调节。

Conserved Signal Transduction Mechanisms and Dark Recovery Kinetic Tuning in the Pseudomonadaceae Short Light, Oxygen, Voltage (LOV) Protein Family.

机构信息

Institut für Biologische Informationsprozesse (IBI): Strukturbiochemie (IBI-7), Forschungszentrum Jülich, 52425 Jülich, Germany.

Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; Institut für Bio- und Geowissenschaften (IBG): Biotechnologie (IBG-1), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.

出版信息

J Mol Biol. 2024 Mar 1;436(5):168458. doi: 10.1016/j.jmb.2024.168458. Epub 2024 Jan 26.

Abstract

Light-Oxygen-Voltage (LOV) flavoproteins transduce a light signal into variable signaling outputs via a structural rearrangement in the sensory core domain, which is then relayed to fused effector domains via α-helical linker elements. Short LOV proteins from Pseudomonadaceae consist of a LOV sensory core and N- and C-terminal α-helices of variable length, providing a simple model system to study the molecular mechanism of allosteric activation. Here we report the crystal structures of two LOV proteins from Pseudomonas fluorescens - SBW25-LOV in the fully light-adapted state and Pf5-LOV in the dark-state. In a comparative analysis of the Pseudomonadaceae short LOVs, the structures demonstrate light-induced rotation of the core domains and splaying of the proximal A'α and Jα helices in the N and C-termini, highlighting evidence for a conserved signal transduction mechanism. Another distinguishing feature of the Pseudomonadaceae short LOV protein family is their highly variable dark recovery, ranging from seconds to days. Understanding this variability is crucial for tuning the signaling behavior of LOV-based optogenetic tools. At 37 °C, SBW25-LOV and Pf5-LOV exhibit adduct state lifetimes of 1470 min and 3.6 min, respectively. To investigate this remarkable difference in dark recovery rates, we targeted three residues lining the solvent channel entrance to the chromophore pocket where we introduced mutations by exchanging the non-conserved amino acids from SBW25-LOV into Pf5-LOV and vice versa. Dark recovery kinetics of the resulting mutants, as well as MD simulations and solvent cavity calculations on the crystal structures suggest a correlation between solvent accessibility and adduct lifetime.

摘要

光氧电压(LOV)黄素蛋白通过在感应核心结构域中发生结构重排,将光信号转化为可变化的信号输出,然后通过α-螺旋连接元件将信号传递到融合的效应结构域。假单胞菌属的短 LOV 蛋白由 LOV 感应核心和 N 端和 C 端可变长度的α-螺旋组成,为研究变构激活的分子机制提供了一个简单的模型系统。在这里,我们报告了来自荧光假单胞菌的两种 LOV 蛋白的晶体结构-SBW25-LOV 在完全光适应状态和 Pf5-LOV 在黑暗状态下的结构。在对假单胞菌属短 LOV 蛋白的比较分析中,这些结构证明了核心结构域的光诱导旋转以及 N 和 C 端近端 A'α 和 Jα 螺旋的展开,突出了保守的信号转导机制的证据。假单胞菌属短 LOV 蛋白家族的另一个区别特征是它们的黑暗恢复高度可变,范围从几秒钟到几天。了解这种可变性对于调整基于 LOV 的光遗传学工具的信号转导行为至关重要。在 37°C 下,SBW25-LOV 和 Pf5-LOV 的加合物状态寿命分别为 1470 分钟和 3.6 分钟。为了研究黑暗恢复速率的这种显著差异,我们将目标对准了三个位于生色团口袋溶剂通道入口的残基,在那里我们通过将 SBW25-LOV 中的非保守氨基酸交换到 Pf5-LOV 中或反之亦然,引入突变。所得突变体的黑暗恢复动力学以及 MD 模拟和晶体结构上的溶剂腔计算表明,溶剂可及性与加合物寿命之间存在相关性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验