Glantz Spencer T, Carpenter Eric J, Melkonian Michael, Gardner Kevin H, Boyden Edward S, Wong Gane Ka-Shu, Chow Brian Y
Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104;
Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9;
Proc Natl Acad Sci U S A. 2016 Mar 15;113(11):E1442-51. doi: 10.1073/pnas.1509428113. Epub 2016 Feb 29.
Light-oxygen-voltage sensitive (LOV) flavoproteins are ubiquitous photoreceptors that mediate responses to environmental cues. Photosensory inputs are transduced into signaling outputs via structural rearrangements in sensor domains that consequently modulate the activity of an effector domain or multidomain clusters. Establishing the diversity in effector function and sensor-effector topology will inform what signaling mechanisms govern light-responsive behaviors across multiple kingdoms of life and how these signals are transduced. Here, we report the bioinformatics identification of over 6,700 candidate LOV domains (including over 4,000 previously unidentified sequences from plants and protists), and insights from their annotations for ontological function and structural arrangements. Motif analysis identified the sensors from ∼42 million ORFs, with strong statistical separation from other flavoproteins and non-LOV members of the structurally related Per-aryl hydrocarbon receptor nuclear translocator (ARNT)-Sim family. Conserved-domain analysis determined putative light-regulated function and multidomain topologies. We found that for certain effectors, sensor-effector linker length is discretized based on both phylogeny and the preservation of α-helical heptad repeats within an extended coiled-coil linker structure. This finding suggests that preserving sensor-effector orientation is a key determinant of linker length, in addition to ancestry, in LOV signaling structure-function. We found a surprisingly high prevalence of effectors with functions previously thought to be rare among LOV proteins, such as regulators of G protein signaling, and discovered several previously unidentified effectors, such as lipases. This work highlights the value of applying genomic and transcriptomic technologies to diverse organisms to capture the structural and functional variation in photosensory proteins that are vastly important in adaptation, photobiology, and optogenetics.
光氧电压敏感(LOV)黄素蛋白是普遍存在的光感受器,介导对环境线索的反应。光感输入通过传感器结构域的重排转化为信号输出,从而调节效应结构域或多结构域簇的活性。确定效应功能和传感器-效应拓扑结构的多样性,将有助于了解在多个生命王国中控制光反应行为的信号传导机制,以及这些信号是如何转导的。在这里,我们报告了通过生物信息学鉴定出的6700多个候选LOV结构域(包括来自植物和原生生物的4000多个先前未鉴定的序列),以及从它们的本体功能和结构排列注释中获得的见解。基序分析从约4200万个开放阅读框中识别出传感器,与其他黄素蛋白以及结构相关的芳基烃受体核转运体(ARNT)-Sim家族的非LOV成员有很强的统计学区分。保守结构域分析确定了假定的光调节功能和多结构域拓扑结构。我们发现,对于某些效应器,传感器-效应器连接子长度基于系统发育和延伸的卷曲螺旋连接子结构内α-螺旋七肽重复序列的保留而离散化。这一发现表明,除了祖先之外,保持传感器-效应器方向是LOV信号结构-功能中连接子长度的关键决定因素。我们发现具有以前认为在LOV蛋白中很少见的功能的效应器的发生率惊人地高,例如G蛋白信号调节剂,并发现了几个以前未鉴定的效应器,如脂肪酶。这项工作强调了将基因组和转录组技术应用于不同生物体以捕捉光感蛋白结构和功能变异的价值,这些变异在适应、光生物学和光遗传学中非常重要。