Suppr超能文献

通过人工智能发现新型抗病毒药物:体外和体内实验结果。

Discovery of new antiviral agents through artificial intelligence: In vitro and in vivo results.

作者信息

Izmailyan Roza, Matevosyan Mher, Khachatryan Hamlet, Shavina Anastasiya, Gevorgyan Smbat, Ghazaryan Artur, Tirosyan Irina, Gabrielyan Yeva, Ayvazyan Marusya, Martirosyan Boris, Harutyunyan Vardan, Zakaryan Hovakim

机构信息

Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, Hasratyan 7, 0014, Yerevan, Armenia.

Denovo Sciences Inc., 0060, Yerevan, Armenia.

出版信息

Antiviral Res. 2024 Feb;222:105818. doi: 10.1016/j.antiviral.2024.105818. Epub 2024 Jan 25.

Abstract

In this research, we employed a deep reinforcement learning (RL)-based molecule design platform to generate a diverse set of compounds targeting the neuraminidase (NA) of influenza A and B viruses. A total of 60,291 compounds were generated, of which 86.5 % displayed superior physicochemical properties compared to oseltamivir. After narrowing down the selection through computational filters, nine compounds with non-sialic acid-like structures were selected for in vitro experiments. We identified two compounds, DS-22-inf-009 and DS-22-inf-021 that effectively inhibited the NAs of both influenza A and B viruses (IAV and IBV), including H275Y mutant strains at low micromolar concentrations. Molecular dynamics simulations revealed a similar pattern of interaction with amino acid residues as oseltamivir. In cell-based assays, DS-22-inf-009 and DS-22-inf-021 inhibited IAV and IBV in a dose-dependent manner with EC values ranging from 0.29 μM to 2.31 μM. Furthermore, animal experiments showed that both DS-22-inf-009 and DS-22-inf-021 exerted antiviral activity in mice, conferring 65 % and 85 % protection from IAV (H1N1 pdm09), and 65 % and 100 % protection from IBV (Yamagata lineage), respectively. Thus, these findings demonstrate the potential of RL to generate compounds with promising antiviral properties.

摘要

在本研究中,我们采用了一个基于深度强化学习(RL)的分子设计平台,以生成针对甲型和乙型流感病毒神经氨酸酶(NA)的多种化合物。共生成了60291种化合物,其中86.5%的化合物与奥司他韦相比具有更优异的物理化学性质。通过计算筛选缩小选择范围后,选择了9种具有非唾液酸样结构的化合物进行体外实验。我们鉴定出两种化合物,DS-22-inf-009和DS-22-inf-021,它们在低微摩尔浓度下能有效抑制甲型和乙型流感病毒(IAV和IBV)的NA,包括H275Y突变株。分子动力学模拟显示,它们与氨基酸残基的相互作用模式与奥司他韦相似。在基于细胞的测定中,DS-22-inf-009和DS-22-inf-021以剂量依赖的方式抑制IAV和IBV,EC值范围为0.29μM至2.31μM。此外,动物实验表明,DS-22-inf-009和DS-22-inf-021在小鼠中均具有抗病毒活性,分别对IAV(H1N1 pdm09)提供65%和85%的保护,对IBV(山形谱系)提供65%和100%的保护。因此,这些发现证明了强化学习在生成具有潜在抗病毒特性化合物方面的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验