School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia.
UMR 8208, MSME, Univ Paris Est Creteil, Univ Gustave Eiffel, CNRS, Créteil, France.
Biomech Model Mechanobiol. 2024 Jun;23(3):893-909. doi: 10.1007/s10237-023-01812-4. Epub 2024 Jan 27.
The mechanical quality of trabecular bone is influenced by its mineral content and spatial distribution, which is controlled by bone remodelling and mineralisation. Mineralisation kinetics occur in two phases: a fast primary mineralisation and a secondary mineralisation that can last from several months to years. Variations in bone turnover and mineralisation kinetics can be observed in the bone mineral density distribution (BMDD). Here, we propose a statistical spatio-temporal bone remodelling model to study the effects of bone turnover (associated with the activation frequency ) and mineralisation kinetics (associated with secondary mineralisation ) on BMDD. In this model, individual basic multicellular units (BMUs) are activated discretely on trabecular surfaces that undergo typical bone remodelling periods. Our results highlight that trabecular BMDD is strongly regulated by and in a coupled way. Ca wt% increases with lower and short . For example, a 4 BMU/year/mm and = 8 years result in a mean Ca wt% of 25, which is in accordance with Ca wt% values reported in quantitative backscattered electron imaging (qBEI) experiments. However, for lower and shorter (from 0.5 to 4 years) one obtains a high Ca wt% and a very narrow skew BMDD to the right. This close link between and highlights the importance of considering both characteristics to draw meaningful conclusion about bone quality. Overall, this model represents a new approach to modelling healthy and diseased bone and can aid in developing deeper insights into disease states like osteoporosis.
小梁骨的力学质量受其矿物质含量和空间分布的影响,而后者又受到骨重建和矿化的控制。矿化动力学分为两个阶段:快速的原发性矿化和可能持续数月至数年的继发性矿化。骨转换和矿化动力学的变化可以在骨矿密度分布(BMDD)中观察到。在这里,我们提出了一个统计时空骨重建模型,以研究骨转换(与激活频率 相关)和矿化动力学(与继发性矿化 相关)对 BMDD 的影响。在这个模型中,单个基本多细胞单位(BMU)在经历典型骨重建周期的小梁表面上离散地被激活。我们的结果强调,小梁 BMDD 受到 和 的耦合强烈调节。Ca wt%随较低的 和较短的 而增加。例如,一个 4 BMU/year/mm 和 = 8 年导致平均 Ca wt%为 25,这与定量背散射电子成像(qBEI)实验报告的 Ca wt%值一致。然而,对于较低的 和较短的 (从 0.5 年到 4 年),可以得到较高的 Ca wt%和非常狭窄的向右偏斜的 BMDD。 和 之间的这种紧密联系突出了考虑这两个特征的重要性,以便对骨质量得出有意义的结论。总的来说,该模型代表了一种建模健康和患病骨骼的新方法,并有助于深入了解骨质疏松症等疾病状态。