文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于放射学特征的列线图对肝细胞癌微血管侵犯的术前评估:一项双中心研究

Preoperative evaluation of microvascular invasion in hepatocellular carcinoma with a radiological feature-based nomogram: a bi-centre study.

作者信息

Deng Yuhui, Yang Dawei, Tan Xianzheng, Xu Hui, Xu Lixue, Ren Ahong, Liu Peng, Yang Zhenghan

机构信息

Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Yongan Road 95, West District, Beijing, 100050, China.

Medical Imaging Division, Heilongjiang Provincial Hospital, Harbin Institute of Technology, Zhongshan Road 82, Xiangfang District, Harbin, 150036, China.

出版信息

BMC Med Imaging. 2024 Jan 27;24(1):29. doi: 10.1186/s12880-024-01206-7.


DOI:10.1186/s12880-024-01206-7
PMID:38281008
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10821254/
Abstract

PURPOSE: To develop a nomogram for preoperative assessment of microvascular invasion (MVI) in hepatocellular carcinoma (HCC) based on the radiological features of enhanced CT and to verify two imaging techniques (CT and MRI) in an external centre. METHOD: A total of 346 patients were retrospectively included (training, n = 185, CT images; external testing 1, n = 90, CT images; external testing 2, n = 71, MRI images), including 229 MVI-negative patients and 117 MVI-positive patients. The radiological features and clinical information of enhanced CT images were analysed, and the independent variables associated with MVI in HCC were determined by logistic regression analysis. Then, a nomogram prediction model was constructed. External validation was performed on CT (n = 90) and MRI (n = 71) images from another centre. RESULTS: Among the 23 radiological and clinical features, size, arterial peritumoral enhancement (APE), tumour margin and alpha-fetoprotein (AFP) were independent influencing factors for MVI in HCC. The nomogram integrating these risk factors had a good predictive effect, with AUC, specificity and sensitivity values of 0.834 (95% CI: 0.774-0.895), 75.0% and 83.5%, respectively. The AUC values of external verification based on CT and MRI image data were 0.794 (95% CI: 0.700-0.888) and 0.883 (95% CI: 0.807-0.959), respectively. No statistical difference in AUC values among training set and testing sets was found. CONCLUSION: The proposed nomogram prediction model for MVI in HCC has high accuracy, can be used with different imaging techniques, and has good clinical applicability.

摘要

目的:基于增强CT的影像学特征开发一种用于肝细胞癌(HCC)微血管侵犯(MVI)术前评估的列线图,并在外部中心验证两种成像技术(CT和MRI)。 方法:回顾性纳入346例患者(训练组,n = 185,CT图像;外部测试1组,n = 90,CT图像;外部测试2组,n = 71,MRI图像),包括229例MVI阴性患者和117例MVI阳性患者。分析增强CT图像的影像学特征和临床信息,通过逻辑回归分析确定与HCC中MVI相关的独立变量。然后,构建列线图预测模型。对来自另一个中心的CT(n = 90)和MRI(n = 71)图像进行外部验证。 结果:在23项影像学和临床特征中,大小、动脉期瘤周强化(APE)、肿瘤边缘和甲胎蛋白(AFP)是HCC中MVI的独立影响因素。整合这些危险因素的列线图具有良好的预测效果,AUC、特异性和敏感性值分别为0.834(95%CI:0.774 - 0.895)、75.0%和83.5%。基于CT和MRI图像数据的外部验证AUC值分别为0.794(95%CI:0.700 - 0.888)和0.883(95%CI:0.807 - 0.959)。训练集和测试集的AUC值无统计学差异。 结论:所提出的HCC中MVI列线图预测模型具有较高准确性,可用于不同成像技术,具有良好的临床适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9288/10821254/9704ebb1f333/12880_2024_1206_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9288/10821254/5029ed685973/12880_2024_1206_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9288/10821254/a3f9be1478fa/12880_2024_1206_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9288/10821254/bf1ee16f42ea/12880_2024_1206_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9288/10821254/945c76b8c56c/12880_2024_1206_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9288/10821254/9704ebb1f333/12880_2024_1206_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9288/10821254/5029ed685973/12880_2024_1206_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9288/10821254/a3f9be1478fa/12880_2024_1206_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9288/10821254/bf1ee16f42ea/12880_2024_1206_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9288/10821254/945c76b8c56c/12880_2024_1206_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9288/10821254/9704ebb1f333/12880_2024_1206_Fig5_HTML.jpg

相似文献

[1]
Preoperative evaluation of microvascular invasion in hepatocellular carcinoma with a radiological feature-based nomogram: a bi-centre study.

BMC Med Imaging. 2024-1-27

[2]
Using deep learning to predict microvascular invasion in hepatocellular carcinoma based on dynamic contrast-enhanced MRI combined with clinical parameters.

J Cancer Res Clin Oncol. 2021-12

[3]
Evaluating the severity of microvascular invasion in hepatocellular carcinoma, by probing the combination of enhancement modes and growth patterns through magnetic resonance imaging.

Radiol Oncol. 2025-4-11

[4]
Transformer model based on Sonazoid contrast-enhanced ultrasound for microvascular invasion prediction in hepatocellular carcinoma.

Med Phys. 2025-7

[5]
Gd-EOB-DTPA-enhanced MRI radiomics and deep learning models to predict microvascular invasion in hepatocellular carcinoma: a multicenter study.

BMC Med Imaging. 2025-3-31

[6]
Novel microvascular invasion-based prognostic nomograms to predict survival outcomes in patients after R0 resection for hepatocellular carcinoma.

J Cancer Res Clin Oncol. 2017-2

[7]
Fractal analysis based on Gd-EOB-DTPA-enhanced MRI for prediction of vessels that encapsulate tumor clusters in patients with hepatocellular carcinoma.

Int J Surg. 2025-7-1

[8]
Multilayer perceptron deep learning radiomics model based on Gd-BOPTA MRI to identify vessels encapsulating tumor clusters in hepatocellular carcinoma: a multi-center study.

Cancer Imaging. 2025-7-7

[9]
A Systematic Review and Meta-Analysis of MRI Radiomics for Predicting Microvascular Invasion in Patients with Hepatocellular Carcinoma.

Curr Med Imaging. 2024

[10]
MRI-based prediction of microvascular invasion/high tumor grade and adjuvant therapy benefit for solitary HCC ≤ 5 cm: a multicenter cohort study.

Eur Radiol. 2025-6

引用本文的文献

[1]
Differentiation of AFP-negative hepatocellular carcinoma from other intrahepatic malignant lesions by a noninvasive predictive model based on Sonazoid contrast-enhanced ultrasound.

Front Oncol. 2025-7-17

[2]
Gd-EOB-DTPA-enhanced MRI radiomics and deep learning models to predict microvascular invasion in hepatocellular carcinoma: a multicenter study.

BMC Med Imaging. 2025-3-31

[3]
Clinical Nomogram Model for Pre-Operative Prediction of Microvascular Invasion of Hepatocellular Carcinoma before Hepatectomy.

Medicina (Kaunas). 2024-8-28

本文引用的文献

[1]
Can a proposed double branch multimodality-contribution-aware TripNet improve the prediction performance of the microvascular invasion of hepatocellular carcinoma based on small samples?

Front Oncol. 2022-10-24

[2]
Diagnostic Accuracy of the Apparent Diffusion Coefficient for Microvascular Invasion in Hepatocellular Carcinoma: A Meta-analysis.

J Clin Transl Hepatol. 2022-8-28

[3]
Diagnostic performance of imaging features in the HBP of gadoxetate disodium-enhanced MRI for microvascular invasion in hepatocellular carcinoma: a meta-analysis.

Acta Radiol. 2022-10

[4]
Prediction of Microvascular Invasion in Hepatocellular Carcinoma via Deep Learning: A Multi-Center and Prospective Validation Study.

Cancers (Basel). 2021-5-14

[5]
Using deep learning to predict microvascular invasion in hepatocellular carcinoma based on dynamic contrast-enhanced MRI combined with clinical parameters.

J Cancer Res Clin Oncol. 2021-12

[6]
Deep Learning With 3D Convolutional Neural Network for Noninvasive Prediction of Microvascular Invasion in Hepatocellular Carcinoma.

J Magn Reson Imaging. 2021-7

[7]
CT Image-Based Texture Analysis to Predict Microvascular Invasion in Primary Hepatocellular Carcinoma.

J Digit Imaging. 2020-12

[8]
The Value of TTPVI in Prediction of Microvascular Invasion in Hepatocellular Carcinoma.

Cancer Manag Res. 2020-6-2

[9]
Prediction of HCC microvascular invasion with gadobenate-enhanced MRI: correlation with pathology.

Eur Radiol. 2020-10

[10]
A Radiomics Nomogram for Preoperative Prediction of Microvascular Invasion in Hepatocellular Carcinoma.

Liver Cancer. 2019-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索