Suppr超能文献

基于Sonazoid对比增强超声的非侵入性预测模型对甲胎蛋白阴性肝细胞癌与其他肝内恶性病变的鉴别诊断

Differentiation of AFP-negative hepatocellular carcinoma from other intrahepatic malignant lesions by a noninvasive predictive model based on Sonazoid contrast-enhanced ultrasound.

作者信息

Zhang Qian, Liu Zhilong, Wang Ruining, Song Lele, Fan Wenwen, Liang Ping, Liu Liping

机构信息

Department of Interventional Ultrasound, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.

Department of Interventional Ultrasound, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.

出版信息

Front Oncol. 2025 Jul 17;15:1623670. doi: 10.3389/fonc.2025.1623670. eCollection 2025.

Abstract

OBJECTIVES

This study aimed to develop and validate a non-invasive predictive model, which was a reliable nomogram to accurately differentiate AFPN-HCC from other intrahepatic malignant lesions.

METHODS

This study enrolled 165 patients with malignant focal liver lesions, including AFPN-HCC (n=85) and other intrahepatic malignant lesions (n=80). Data were analyzed to screen for risk factors phase by using LASSO regression as well as univariate and multivariate logistic regression analysis. We constructed a model and developed a nomogram. Then using the area under the curve, Hosmer-Lemeshow test, calibration curves, decision curve analysis, and 1,000 bootstraps to assess and internally validate the model performance. We calculated the optimal threshold, sensitivity, specificity, positive and negative predictive value, and accuracy of the prediction model.

RESULTS

LASSO and multivariate logistic regression analyses indicated that tumor number, necrosis in tumor, arterial phase enhancement pattern, arterial phase perfusion velocity, and Kupffer phase degree of washout were the significant predictors to differentiate AFPN-HCC from OM. The AUC was 0.886, and the AUC of internal validation was 0.865. The optimal critical value of the predicted value was 0.524, with a sensitivity of 82.35%, specificity of 85.00%, positive predicted value of 85.37%, negative predicted value of 81.93%, and an accuracy of 83.64%. The value of the Hosmer-Lemeshow test was 0.592. The calibration plots showed a high concordance of prediction. The decision curve analysis showed excellent net benefits.

CONCLUSION

Our nomogram has excellent discrimination, calibration and clinical utility by combining SCEUS and clinical features, which may help clinicians improve the diagnostic performance for AFPN-HCC, contributing to individualized treatment.

摘要

目的

本研究旨在开发并验证一种非侵入性预测模型,即一种可靠的列线图,以准确区分 AFP 阴性 HCC 与其他肝内恶性病变。

方法

本研究纳入了 165 例肝恶性局灶性病变患者,包括 AFP 阴性 HCC(n = 85)和其他肝内恶性病变(n = 80)。通过使用 LASSO 回归以及单因素和多因素逻辑回归分析,分阶段对数据进行分析以筛选危险因素。我们构建了一个模型并开发了一个列线图。然后使用曲线下面积、Hosmer-Lemeshow 检验、校准曲线、决策曲线分析和 1000 次自抽样来评估并内部验证模型性能。我们计算了预测模型的最佳阈值、敏感性、特异性、阳性和阴性预测值以及准确性。

结果

LASSO 和多因素逻辑回归分析表明,肿瘤数量、肿瘤内坏死、动脉期强化模式、动脉期灌注速度和 Kupffer 期廓清程度是区分 AFP 阴性 HCC 与其他肝内恶性病变的重要预测因素。曲线下面积为 0.886,内部验证的曲线下面积为 0.865。预测值的最佳临界值为 0.524,敏感性为 82.35%,特异性为 85.00%,阳性预测值为 85.37%,阴性预测值为 81.93%,准确性为 83.64%。Hosmer-Lemeshow 检验的值为 0.592。校准图显示预测具有高度一致性。决策曲线分析显示出极佳的净效益。

结论

我们的列线图通过结合超声造影和临床特征,具有出色的区分度、校准度和临床实用性,这可能有助于临床医生提高对 AFP 阴性 HCC 的诊断性能,有助于个体化治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e9d/12312008/5aad94bc2ffe/fonc-15-1623670-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验