Wei Jingwei, Jiang Hanyu, Zeng Mengsu, Wang Meiyun, Niu Meng, Gu Dongsheng, Chong Huanhuan, Zhang Yanyan, Fu Fangfang, Zhou Mu, Chen Jie, Lyv Fudong, Wei Hong, Bashir Mustafa R, Song Bin, Li Hongjun, Tian Jie
Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.
Beijing Key Laboratory of Molecular Imaging, Beijing 100190, China.
Cancers (Basel). 2021 May 14;13(10):2368. doi: 10.3390/cancers13102368.
Microvascular invasion (MVI) is a critical risk factor for postoperative recurrence of hepatocellular carcinoma (HCC). Preknowledge of MVI would assist tailored surgery planning in HCC management. In this multicenter study, we aimed to explore the validity of deep learning (DL) in MVI prediction using two imaging modalities-contrast-enhanced computed tomography (CE-CT) and gadoxetic acid-enhanced magnetic resonance imaging (EOB-MRI). A total of 750 HCCs were enrolled from five Chinese tertiary hospitals. Retrospective CE-CT ( = 306, collected between March, 2013 and July, 2019) and EOB-MRI ( = 329, collected between March, 2012 and March, 2019) data were used to train two DL models, respectively. Prospective external validation ( = 115, collected between July, 2015 and February, 2018) was performed to assess the developed models. Furthermore, DL-based attention maps were utilized to visualize high-risk MVI regions. Our findings revealed that the EOB-MRI-based DL model achieved superior prediction outcome to the CE-CT-based DL model (area under receiver operating characteristics curve (AUC): 0.812 vs. 0.736, = 0.038; sensitivity: 70.4% vs. 57.4%, = 0.015; specificity: 80.3% vs. 86.9%, = 0.052). DL attention maps could visualize peritumoral high-risk areas with genuine histopathologic confirmation. Both DL models could stratify high and low-risk groups regarding progression free survival and overall survival ( < 0.05). Thus, DL can be an efficient tool for MVI prediction, and EOB-MRI was proven to be the modality with advantage for MVI assessment than CE-CT.
微血管侵犯(MVI)是肝细胞癌(HCC)术后复发的关键危险因素。了解MVI有助于在HCC治疗中制定个性化的手术计划。在这项多中心研究中,我们旨在探讨深度学习(DL)在使用两种成像方式——对比增强计算机断层扫描(CE-CT)和钆塞酸二钠增强磁共振成像(EOB-MRI)预测MVI方面的有效性。我们从五家中国三级医院招募了750例HCC患者。回顾性CE-CT(n = 306,收集于2013年3月至2019年7月)和EOB-MRI(n = 329,收集于2012年3月至2019年3月)数据分别用于训练两个DL模型。进行前瞻性外部验证(n = 115,收集于2015年7月至2018年2月)以评估所开发的模型。此外,基于DL的注意力图被用于可视化高风险MVI区域。我们的研究结果显示,基于EOB-MRI的DL模型在预测结果上优于基于CE-CT的DL模型(受试者操作特征曲线下面积(AUC):0.812对0.736,P = 0.038;敏感性:70.4%对57.4%,P = 0.015;特异性:80.3%对86.9%,P = 0.052)。DL注意力图可以在真正的组织病理学证实下可视化肿瘤周围的高风险区域。两个DL模型都可以根据无进展生存期和总生存期对高风险和低风险组进行分层(P < 0.05)。因此,DL可以成为预测MVI的有效工具,并且已证明EOB-MRI在评估MVI方面比CE-CT更具优势。