Suppr超能文献

MMCT-Loop:一种基于混合模型的靶向 3D 染色质环调用流水线。

MMCT-Loop: a mix model-based pipeline for calling targeted 3D chromatin loops.

机构信息

Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, China.

Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02129, USA.

出版信息

Nucleic Acids Res. 2024 Mar 21;52(5):e25. doi: 10.1093/nar/gkae029.

Abstract

Protein-specific Chromatin Conformation Capture (3C)-based technologies have become essential for identifying distal genomic interactions with critical roles in gene regulation. The standard techniques include Chromatin Interaction Analysis by Paired-End Tag (ChIA-PET), in situ Hi-C followed by chromatin immunoprecipitation (HiChIP) also known as PLAC-seq. To identify chromatin interactions from these data, a variety of computational methods have emerged. Although these state-of-art methods address many issues with loop calling, only few methods can fit different data types simultaneously, and the accuracy as well as the efficiency these approaches remains limited. Here we have generated a pipeline, MMCT-Loop, which ensures the accurate identification of strong loops as well as dynamic or weak loops through a mixed model. MMCT-Loop outperforms existing methods in accuracy, and the detected loops show higher activation functionality. To highlight the utility of MMCT-Loop, we applied it to conformational data derived from neural stem cell (NSCs) and uncovered several previously unidentified regulatory regions for key master regulators of stem cell identity. MMCT-Loop is an accurate and efficient loop caller for targeted conformation capture data, which supports raw data or pre-processed valid pairs as input, the output interactions are formatted and easily uploaded to a genome browser for visualization.

摘要

基于蛋白特异性染色质构象捕获(3C)的技术已成为鉴定在基因调控中起关键作用的远端基因组相互作用的必要手段。标准技术包括通过末端配对标签(ChIA-PET)进行染色质相互作用分析、原位 Hi-C 后进行染色质免疫沉淀(HiChIP)也称为 PLAC-seq。为了从这些数据中识别染色质相互作用,已经出现了各种计算方法。尽管这些最先进的方法解决了循环调用的许多问题,但只有少数方法可以同时适应不同的数据类型,并且这些方法的准确性和效率仍然有限。在这里,我们生成了一个流水线 MMCT-Loop,它通过混合模型确保了强循环以及动态或弱循环的准确识别。MMCT-Loop 在准确性方面优于现有方法,并且检测到的循环显示出更高的激活功能。为了突出 MMCT-Loop 的实用性,我们将其应用于源自神经干细胞(NSCs)的构象数据,并揭示了几个先前未识别的关键干细胞身份主调控因子的调控区域。MMCT-Loop 是一种针对靶向构象捕获数据的准确高效的循环调用器,它支持以原始数据或预处理的有效对作为输入,输出的相互作用格式化为便于上传到基因组浏览器进行可视化。

相似文献

1
MMCT-Loop: a mix model-based pipeline for calling targeted 3D chromatin loops.
Nucleic Acids Res. 2024 Mar 21;52(5):e25. doi: 10.1093/nar/gkae029.
2
Identification of significant chromatin contacts from HiChIP data by FitHiChIP.
Nat Commun. 2019 Sep 17;10(1):4221. doi: 10.1038/s41467-019-11950-y.
3
Methods for comparative ChIA-PET and Hi-C data analysis.
Methods. 2020 Jan 1;170:69-74. doi: 10.1016/j.ymeth.2019.09.019. Epub 2019 Oct 16.
4
7C: Computational Chromosome Conformation Capture by Correlation of ChIP-seq at CTCF motifs.
BMC Genomics. 2019 Oct 25;20(1):777. doi: 10.1186/s12864-019-6088-0.
5
ChromLoops: a comprehensive database for specific protein-mediated chromatin loops in diverse organisms.
Nucleic Acids Res. 2023 Jan 6;51(D1):D57-D69. doi: 10.1093/nar/gkac893.
6
HPRep: Quantifying Reproducibility in HiChIP and PLAC-Seq Datasets.
Curr Issues Mol Biol. 2021 Sep 17;43(2):1156-1170. doi: 10.3390/cimb43020082.
7
Analysis of HiChIP Data.
Methods Mol Biol. 2022;2301:209-234. doi: 10.1007/978-1-0716-1390-0_11.
8
Accurate loop calling for 3D genomic data with cLoops.
Bioinformatics. 2020 Feb 1;36(3):666-675. doi: 10.1093/bioinformatics/btz651.
9
Assessing Specific Networks of Chromatin Interactions with HiChIP.
Methods Mol Biol. 2022;2532:113-141. doi: 10.1007/978-1-0716-2497-5_7.
10
DLoopCaller: A deep learning approach for predicting genome-wide chromatin loops by integrating accessible chromatin landscapes.
PLoS Comput Biol. 2022 Oct 7;18(10):e1010572. doi: 10.1371/journal.pcbi.1010572. eCollection 2022 Oct.

引用本文的文献

1
A 3D Genome Atlas of Genetic Variants and Their Pathological Effects in Cancer.
Adv Sci (Weinh). 2025 May;12(19):e2408420. doi: 10.1002/advs.202408420. Epub 2025 Mar 25.

本文引用的文献

1
CTCF is a DNA-tension-dependent barrier to cohesin-mediated loop extrusion.
Nature. 2023 Apr;616(7958):822-827. doi: 10.1038/s41586-023-05961-5. Epub 2023 Apr 19.
2
Enhancer-promoter interactions and transcription are largely maintained upon acute loss of CTCF, cohesin, WAPL or YY1.
Nat Genet. 2022 Dec;54(12):1919-1932. doi: 10.1038/s41588-022-01223-8. Epub 2022 Dec 5.
3
Polycomb-mediated genome architecture enables long-range spreading of H3K27 methylation.
Proc Natl Acad Sci U S A. 2022 May 31;119(22):e2201883119. doi: 10.1073/pnas.2201883119. Epub 2022 May 26.
4
Identification of chromatin loops from Hi-C interaction matrices by CTCF-CTCF topology classification.
NAR Genom Bioinform. 2022 Mar 8;4(1):lqac021. doi: 10.1093/nargab/lqac021. eCollection 2022 Mar.
6
cLoops2: a full-stack comprehensive analytical tool for chromatin interactions.
Nucleic Acids Res. 2022 Jan 11;50(1):57-71. doi: 10.1093/nar/gkab1233.
8
Mechanisms underlying divergent responses of genetically distinct macrophages to IL-4.
Sci Adv. 2021 Jun 16;7(25). doi: 10.1126/sciadv.abf9808. Print 2021 Jun.
9
Single-nucleotide-level mapping of DNA regulatory elements that control fetal hemoglobin expression.
Nat Genet. 2021 Jun;53(6):869-880. doi: 10.1038/s41588-021-00861-8. Epub 2021 May 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验