Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA.
Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA.
Nat Genet. 2021 Jun;53(6):869-880. doi: 10.1038/s41588-021-00861-8. Epub 2021 May 6.
Pinpointing functional noncoding DNA sequences and defining their contributions to health-related traits is a major challenge for modern genetics. We developed a high-throughput framework to map noncoding DNA functions with single-nucleotide resolution in four loci that control erythroid fetal hemoglobin (HbF) expression, a genetically determined trait that modifies sickle cell disease (SCD) phenotypes. Specifically, we used the adenine base editor ABEmax to introduce 10,156 separate A•T to G•C conversions in 307 predicted regulatory elements and quantified the effects on erythroid HbF expression. We identified numerous regulatory elements, defined their epigenomic structures and linked them to low-frequency variants associated with HbF expression in an SCD cohort. Targeting a newly discovered γ-globin gene repressor element in SCD donor CD34 hematopoietic progenitors raised HbF levels in the erythroid progeny, inhibiting hypoxia-induced sickling. Our findings reveal previously unappreciated genetic complexities of HbF regulation and provide potentially therapeutic insights into SCD.
确定功能非编码 DNA 序列并定义其对与健康相关特征的贡献是现代遗传学的一大挑战。我们开发了一种高通量框架,以单核苷酸分辨率在四个控制红细胞胎儿血红蛋白 (HbF) 表达的基因座中绘制非编码 DNA 功能,HbF 是一种遗传决定的特征,可改变镰状细胞病 (SCD) 的表型。具体来说,我们使用腺嘌呤碱基编辑器 ABEmax 在 307 个预测的调节元件中引入了 10,156 个单独的 A•T 到 G•C 转换,并量化了它们对红细胞 HbF 表达的影响。我们鉴定了许多调节元件,定义了它们的表观基因组结构,并将它们与 SCD 队列中与 HbF 表达相关的低频变体联系起来。在 SCD 供体 CD34 造血祖细胞中靶向一个新发现的 γ-珠蛋白基因抑制剂元件,可提高红细胞后代的 HbF 水平,抑制缺氧诱导的镰状化。我们的发现揭示了 HbF 调节的先前未被认识到的遗传复杂性,并为 SCD 提供了潜在的治疗见解。