Suppr超能文献

单核苷酸水平上 DNA 调控元件的绘制,这些调控元件控制胎儿血红蛋白的表达。

Single-nucleotide-level mapping of DNA regulatory elements that control fetal hemoglobin expression.

机构信息

Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA.

Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA.

出版信息

Nat Genet. 2021 Jun;53(6):869-880. doi: 10.1038/s41588-021-00861-8. Epub 2021 May 6.

Abstract

Pinpointing functional noncoding DNA sequences and defining their contributions to health-related traits is a major challenge for modern genetics. We developed a high-throughput framework to map noncoding DNA functions with single-nucleotide resolution in four loci that control erythroid fetal hemoglobin (HbF) expression, a genetically determined trait that modifies sickle cell disease (SCD) phenotypes. Specifically, we used the adenine base editor ABEmax to introduce 10,156 separate A•T to G•C conversions in 307 predicted regulatory elements and quantified the effects on erythroid HbF expression. We identified numerous regulatory elements, defined their epigenomic structures and linked them to low-frequency variants associated with HbF expression in an SCD cohort. Targeting a newly discovered γ-globin gene repressor element in SCD donor CD34 hematopoietic progenitors raised HbF levels in the erythroid progeny, inhibiting hypoxia-induced sickling. Our findings reveal previously unappreciated genetic complexities of HbF regulation and provide potentially therapeutic insights into SCD.

摘要

确定功能非编码 DNA 序列并定义其对与健康相关特征的贡献是现代遗传学的一大挑战。我们开发了一种高通量框架,以单核苷酸分辨率在四个控制红细胞胎儿血红蛋白 (HbF) 表达的基因座中绘制非编码 DNA 功能,HbF 是一种遗传决定的特征,可改变镰状细胞病 (SCD) 的表型。具体来说,我们使用腺嘌呤碱基编辑器 ABEmax 在 307 个预测的调节元件中引入了 10,156 个单独的 A•T 到 G•C 转换,并量化了它们对红细胞 HbF 表达的影响。我们鉴定了许多调节元件,定义了它们的表观基因组结构,并将它们与 SCD 队列中与 HbF 表达相关的低频变体联系起来。在 SCD 供体 CD34 造血祖细胞中靶向一个新发现的 γ-珠蛋白基因抑制剂元件,可提高红细胞后代的 HbF 水平,抑制缺氧诱导的镰状化。我们的发现揭示了 HbF 调节的先前未被认识到的遗传复杂性,并为 SCD 提供了潜在的治疗见解。

相似文献

2
Genome editing of HBG1 and HBG2 to induce fetal hemoglobin.编辑 HBG1 和 HBG2 基因以诱导胎儿血红蛋白。
Blood Adv. 2019 Nov 12;3(21):3379-3392. doi: 10.1182/bloodadvances.2019000820.
10
Transcriptional Repressor BCL11A in Erythroid Cells.红细胞中的转录抑制因子 BCL11A。
Adv Exp Med Biol. 2024;1459:199-215. doi: 10.1007/978-3-031-62731-6_9.

引用本文的文献

2
Methylation profile of individuals with sickle cell trait.具有镰状细胞性状个体的甲基化谱。
Epigenetics. 2025 Dec;20(1):2539234. doi: 10.1080/15592294.2025.2539234. Epub 2025 Aug 4.
7
A foundation model of transcription across human cell types.一种跨人类细胞类型的转录基础模型。
Nature. 2025 Jan;637(8047):965-973. doi: 10.1038/s41586-024-08391-z. Epub 2025 Jan 8.
8
Transcriptional regulators of fetal hemoglobin.胎儿血红蛋白的转录调节因子。
Hematol Transfus Cell Ther. 2024 Nov;46 Suppl 5(Suppl 5):S258-S268. doi: 10.1016/j.htct.2024.06.001. Epub 2024 Aug 17.
9
CRISPR technology in human diseases.用于人类疾病治疗的CRISPR技术。
MedComm (2020). 2024 Jul 29;5(8):e672. doi: 10.1002/mco2.672. eCollection 2024 Aug.

本文引用的文献

2
Global reference mapping of human transcription factor footprints.人类转录因子足迹的全球参考图谱绘制。
Nature. 2020 Jul;583(7818):729-736. doi: 10.1038/s41586-020-2528-x. Epub 2020 Jul 29.
7
Therapeutic base editing of human hematopoietic stem cells.人造血干细胞的治疗性碱基编辑。
Nat Med. 2020 Apr;26(4):535-541. doi: 10.1038/s41591-020-0790-y. Epub 2020 Mar 16.
9
The regulatory landscapes of developmental genes.发育基因的调控景观。
Development. 2020 Feb 3;147(3):dev171736. doi: 10.1242/dev.171736.
10
Genome editing of HBG1 and HBG2 to induce fetal hemoglobin.编辑 HBG1 和 HBG2 基因以诱导胎儿血红蛋白。
Blood Adv. 2019 Nov 12;3(21):3379-3392. doi: 10.1182/bloodadvances.2019000820.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验