Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA 94305.
Department of Genetics, Stanford University, Stanford, CA 94305.
Proc Natl Acad Sci U S A. 2022 May 31;119(22):e2201883119. doi: 10.1073/pnas.2201883119. Epub 2022 May 26.
Polycomb-group proteins play critical roles in gene silencing through the deposition of histone H3 lysine 27 trimethylation (H3K27me3) and chromatin compaction. This process is essential for embryonic stem cell (ESC) pluripotency, differentiation, and development. Polycomb repressive complex 2 (PRC2) can both read and write H3K27me3, enabling progressive spreading of H3K27me3 on the linear genome. Long-range Polycomb-associated DNA contacts have also been described, but their regulation and role in gene silencing remain unclear. Here, we apply H3K27me3 HiChIP, a protein-directed chromosome conformation method, and optical reconstruction of chromatin architecture to profile long-range Polycomb-associated DNA loops that span tens to hundreds of megabases across multiple topological associated domains in mouse ESCs and human induced pluripotent stem cells. We find that H3K27me3 loop anchors are enriched for Polycomb nucleation points and coincide with key developmental genes. Genetic deletion of H3K27me3 loop anchors results in disruption of spatial contact between distant loci and altered H3K27me3 in cis, both locally and megabases away on the same chromosome. In mouse embryos, loop anchor deletion leads to ectopic activation of the partner gene, suggesting that Polycomb-associated loops control gene silencing during development. Further, we find that alterations in PRC2 occupancy resulting from an RNA binding–deficient EZH2 mutant are accompanied by loss of Polycomb-associated DNA looping. Together, these results suggest PRC2 uses RNA binding to enhance long-range chromosome folding and H3K27me3 spreading. Developmental gene loci have unique roles in Polycomb spreading, emerging as important architectural elements of the epigenome.
多梳蛋白家族通过组蛋白 H3 赖氨酸 27 三甲基化 (H3K27me3) 的沉积和染色质的紧缩在基因沉默中发挥关键作用。这个过程对于胚胎干细胞 (ESC) 的多能性、分化和发育是必不可少的。多梳抑制复合物 2 (PRC2) 既可以读取也可以书写 H3K27me3,使 H3K27me3 在线性基因组上逐步扩散。长距离多梳相关的 DNA 接触也已经被描述,但它们在基因沉默中的调控和作用仍然不清楚。在这里,我们应用 H3K27me3 HiChIP,一种蛋白导向的染色体构象方法,以及染色质结构的光学重构,来描绘跨越数十到数百兆碱基对的长距离多梳相关的 DNA 环,这些环跨越多个拓扑相关结构域,存在于小鼠 ESC 和人诱导多能干细胞中。我们发现 H3K27me3 环锚定富含多梳核启动点,并与关键发育基因重合。H3K27me3 环锚定点的遗传缺失导致远距离基因座之间空间接触的破坏,以及在顺式中 H3K27me3 的改变,局部和数百兆碱基对远在同一染色体上。在小鼠胚胎中,环锚定点缺失导致伙伴基因的异位激活,这表明多梳相关的环在发育过程中控制基因沉默。此外,我们发现由于 RNA 结合缺陷的 EZH2 突变导致的 PRC2 占据的改变伴随着多梳相关 DNA 环的丢失。总的来说,这些结果表明 PRC2 利用 RNA 结合来增强长距离染色体折叠和 H3K27me3 的扩散。发育基因座在多梳扩散中具有独特的作用,它们作为表观基因组的重要结构元件出现。