Suppr超能文献

基于模板的 MRI 皮质表面重建的神经变形场。

Neural deformation fields for template-based reconstruction of cortical surfaces from MRI.

机构信息

Laboratory for Artificial Intelligence in Medical Imaging, Department of Radiology, Technical University of Munich, Munich 81675, Germany; Munich Center for Machine Learning, Munich, Germany.

Laboratory for Artificial Intelligence in Medical Imaging, Department of Radiology, Technical University of Munich, Munich 81675, Germany; Department of Child and Adolescent Psychiatry, Ludwig-Maximilians-University, Munich 80336, Germany.

出版信息

Med Image Anal. 2024 Apr;93:103093. doi: 10.1016/j.media.2024.103093. Epub 2024 Jan 26.

Abstract

The reconstruction of cortical surfaces is a prerequisite for quantitative analyses of the cerebral cortex in magnetic resonance imaging (MRI). Existing segmentation-based methods separate the surface registration from the surface extraction, which is computationally inefficient and prone to distortions. We introduce Vox2Cortex-Flow (V2C-Flow), a deep mesh-deformation technique that learns a deformation field from a brain template to the cortical surfaces of an MRI scan. To this end, we present a geometric neural network that models the deformation-describing ordinary differential equation in a continuous manner. The network architecture comprises convolutional and graph-convolutional layers, which allows it to work with images and meshes at the same time. V2C-Flow is not only very fast, requiring less than two seconds to infer all four cortical surfaces, but also establishes vertex-wise correspondences to the template during reconstruction. In addition, V2C-Flow is the first approach for cortex reconstruction that models white matter and pial surfaces jointly, therefore avoiding intersections between them. Our comprehensive experiments on internal and external test data demonstrate that V2C-Flow results in cortical surfaces that are state-of-the-art in terms of accuracy. Moreover, we show that the established correspondences are more consistent than in FreeSurfer and that they can directly be utilized for cortex parcellation and group analyses of cortical thickness.

摘要

皮质表面重建是磁共振成像 (MRI) 中定量分析大脑皮质的前提。现有的基于分割的方法将表面配准与表面提取分开,这在计算上效率低下,容易产生变形。我们引入了 Vox2Cortex-Flow(V2C-Flow),这是一种深度网格变形技术,它从大脑模板学习到 MRI 扫描的皮质表面的变形场。为此,我们提出了一种几何神经网络,该网络以连续的方式对变形描述的常微分方程进行建模。该网络架构包括卷积和图卷积层,这使其能够同时处理图像和网格。V2C-Flow 不仅非常快,推断所有四个皮质表面所需的时间不到两秒,而且在重建过程中还可以与模板建立顶点对应关系。此外,V2C-Flow 是第一个联合建模白质和软脑膜表面的皮层重建方法,因此避免了它们之间的交叉。我们在内部和外部测试数据上进行的全面实验表明,V2C-Flow 生成的皮质表面在准确性方面达到了最新水平。此外,我们还表明,所建立的对应关系比 FreeSurfer 更一致,并且可以直接用于皮质分割和皮质厚度的组分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验