Ma Qiang, Li Liu, Robinson Emma C, Kainz Bernhard, Rueckert Daniel, Alansary Amir
IEEE Trans Med Imaging. 2023 Feb;42(2):430-443. doi: 10.1109/TMI.2022.3206221. Epub 2023 Feb 2.
We present CortexODE, a deep learning framework for cortical surface reconstruction. CortexODE leverages neural ordinary differential equations (ODEs) to deform an input surface into a target shape by learning a diffeomorphic flow. The trajectories of the points on the surface are modeled as ODEs, where the derivatives of their coordinates are parameterized via a learnable Lipschitz-continuous deformation network. This provides theoretical guarantees for the prevention of self-intersections. CortexODE can be integrated to an automatic learning-based pipeline, which reconstructs cortical surfaces efficiently in less than 5 seconds. The pipeline utilizes a 3D U-Net to predict a white matter segmentation from brain Magnetic Resonance Imaging (MRI) scans, and further generates a signed distance function that represents an initial surface. Fast topology correction is introduced to guarantee homeomorphism to a sphere. Following the isosurface extraction step, two CortexODE models are trained to deform the initial surface to white matter and pial surfaces respectively. The proposed pipeline is evaluated on large-scale neuroimage datasets in various age groups including neonates (25-45 weeks), young adults (22-36 years) and elderly subjects (55-90 years). Our experiments demonstrate that the CortexODE-based pipeline can achieve less than 0.2mm average geometric error while being orders of magnitude faster compared to conventional processing pipelines.
我们提出了CortexODE,一种用于皮质表面重建的深度学习框架。CortexODE利用神经常微分方程(ODE),通过学习微分同胚流将输入表面变形为目标形状。表面上点的轨迹被建模为ODE,其坐标的导数通过可学习的李普希茨连续变形网络进行参数化。这为防止自相交提供了理论保证。CortexODE可以集成到基于自动学习的管道中,该管道能在不到5秒的时间内高效地重建皮质表面。该管道利用3D U-Net从脑部磁共振成像(MRI)扫描中预测白质分割,并进一步生成表示初始表面的符号距离函数。引入了快速拓扑校正以保证与球体的同胚性。在等值面提取步骤之后,训练两个CortexODE模型分别将初始表面变形为白质表面和软脑膜表面。所提出的管道在包括新生儿(25 - 45周)、年轻人(22 - 36岁)和老年人(55 - 90岁)在内的各年龄组的大规模神经图像数据集上进行了评估。我们的实验表明,基于CortexODE的管道平均几何误差可小于0.2毫米,同时与传统处理管道相比速度快几个数量级。