Suppr超能文献

通过微分同胚网格变形进行皮质表面的耦合重建

Coupled Reconstruction of Cortical Surfaces by Diffeomorphic Mesh Deformation.

作者信息

Zheng Hao, Li Hongming, Fan Yong

机构信息

University of Pennsylvania.

出版信息

Adv Neural Inf Process Syst. 2023 Dec;36:80608-80621.

Abstract

Accurate reconstruction of cortical surfaces from brain magnetic resonance images (MRIs) remains a challenging task due to the notorious partial volume effect in brain MRIs and the cerebral cortex's thin and highly folded patterns. Although many promising deep learning-based cortical surface reconstruction methods have been developed, they typically fail to model the interdependence between inner (white matter) and outer (pial) cortical surfaces, which can help generate cortical surfaces with spherical topology. To robustly reconstruct the cortical surfaces with topological correctness, we develop a new deep learning framework to jointly reconstruct the inner, outer, and their in-between (midthickness) surfaces and estimate cortical thickness directly from 3D MRIs. Our method first estimates the midthickness surface and then learns three diffeomorphic flows jointly to optimize the midthickness surface and deform it inward and outward to the inner and outer cortical surfaces respectively, regularized by topological correctness. Our method also outputs a cortex thickness value for each surface vertex, estimated from its diffeomorphic deformation trajectory. Our method has been evaluated on two large-scale neuroimaging datasets, including ADNI and OASIS, achieving state-of-the-art cortical surface reconstruction performance in terms of accuracy, surface regularity, and computation efficiency.

摘要

由于脑磁共振成像(MRI)中存在众所周知的部分容积效应以及大脑皮层薄且高度折叠的形态,从脑磁共振图像准确重建皮层表面仍然是一项具有挑战性的任务。尽管已经开发了许多基于深度学习的有前景的皮层表面重建方法,但它们通常无法对内侧(白质)和外侧(软脑膜)皮层表面之间的相互依赖性进行建模,而这种相互依赖性有助于生成具有球形拓扑结构的皮层表面。为了稳健地重建具有拓扑正确性的皮层表面,我们开发了一种新的深度学习框架,以联合重建内侧、外侧及其中间(中厚度)表面,并直接从三维磁共振图像估计皮层厚度。我们的方法首先估计中厚度表面,然后联合学习三个微分同胚流,以优化中厚度表面,并分别将其向内和向外变形为内侧和外侧皮层表面,通过拓扑正确性进行正则化。我们的方法还为每个表面顶点输出一个皮层厚度值,该值是根据其微分同胚变形轨迹估计得出的。我们的方法已在包括阿尔茨海默病神经影像学倡议(ADNI)和老年人脑成像数据集(OASIS)在内的两个大规模神经影像学数据集上进行了评估,在准确性、表面规则性和计算效率方面实现了领先的皮层表面重建性能。

相似文献

2
NN: Joint Reconstruction of Multiple Cortical Surfaces from Magnetic Resonance Images.NN:基于磁共振图像的多个皮质表面的联合重建
Proc IEEE Int Symp Biomed Imaging. 2023 Apr;2023. doi: 10.1109/isbi53787.2023.10230488. Epub 2023 Sep 1.
8
CortexODE: Learning Cortical Surface Reconstruction by Neural ODEs.皮质常微分方程:通过神经常微分方程学习皮质表面重建
IEEE Trans Med Imaging. 2023 Feb;42(2):430-443. doi: 10.1109/TMI.2022.3206221. Epub 2023 Feb 2.
9
S3Reg: Superfast Spherical Surface Registration Based on Deep Learning.S3Reg:基于深度学习的超快速球面配准。
IEEE Trans Med Imaging. 2021 Aug;40(8):1964-1976. doi: 10.1109/TMI.2021.3069645. Epub 2021 Jul 30.

本文引用的文献

1
NN: Joint Reconstruction of Multiple Cortical Surfaces from Magnetic Resonance Images.NN:基于磁共振图像的多个皮质表面的联合重建
Proc IEEE Int Symp Biomed Imaging. 2023 Apr;2023. doi: 10.1109/isbi53787.2023.10230488. Epub 2023 Sep 1.
4
Vox2Surf: Implicit Surface Reconstruction from Volumetric Data.Vox2Surf:从体数据进行隐式曲面重建
Med Image Comput Comput Assist Interv. 2021 Sep;12966:644-653. doi: 10.1007/978-3-030-87589-3_66. Epub 2021 Sep 21.
5
CortexODE: Learning Cortical Surface Reconstruction by Neural ODEs.皮质常微分方程:通过神经常微分方程学习皮质表面重建
IEEE Trans Med Imaging. 2023 Feb;42(2):430-443. doi: 10.1109/TMI.2022.3206221. Epub 2023 Feb 2.
6
Pixel2Mesh++: 3D Mesh Generation and Refinement From Multi-View Images.Pixel2Mesh++:从多视图图像生成和细化3D网格
IEEE Trans Pattern Anal Mach Intell. 2023 Feb;45(2):2166-2180. doi: 10.1109/TPAMI.2022.3169735. Epub 2023 Jan 6.
9
A deep-learning approach for direct whole-heart mesh reconstruction.深度学习方法实现直接整体心脏网格重建。
Med Image Anal. 2021 Dec;74:102222. doi: 10.1016/j.media.2021.102222. Epub 2021 Sep 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验