Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, Jiangsu 214122, China.
Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
Sci Total Environ. 2024 Mar 20;917:170404. doi: 10.1016/j.scitotenv.2024.170404. Epub 2024 Jan 26.
It is feasible to improve plant photosynthesis to address the global climate goals of carbon neutrality. The application of artificial humic acid (AHA) is a promising approach to promote plant photosynthesis, however, the associated mechanisms for C3 and C4 plants are still unclear. In this study, the real-time chlorophyll synthesis and microscopic physiological changes in plant leave cells with the application of AHA were first revealed using the real-time chlorophyll fluorescence parameters and Non-invasive Micro-test Technique. The transcriptomics suggested that the AHA application up-regulated the genes in photosynthesis, especially related to chlorophyll synthesis and light energy capture, in maize and the genes in photosynthetic vitality and carbohydrate metabolic process in lettuce. Structural equation model suggested that the photodegradable substances and growth hormones in AHA directly contributes to photosynthesis of C4 plants (0.37). AHA indirectly promotes the photosynthesis in the C4 plants by upregulating functional genes (e.g., Mg-CHLI and Chlorophyllase) involved in light capture and transformation (0.96). In contrast, AHA mainly indirectly promotes C3 plants photosynthesis by increasing chlorophyll synthesis, and the Rubisco activity and the ZmRbcS expression in the dark reaction of lettuce (0.55). In addition, Mg transfer and flux in C3 plant leaves was significantly improved by AHA, indirectly contributes to plant photosynthesis (0.24). Finally, the AHA increased the net photosynthetic rate of maize by 46.50 % and that of lettuce by 88.00 %. Application of the nutrients- and hormone-rich AHA improves plant growth and photosynthesis even better than traditional Hoagland solution. The revelation of the different photosynthetic promotion mechanisms on C3 and C4 plant in this work guides the synthesis and efficient application of AHA in green agriculture and will propose the development of AHA technology to against climate change resulting from CO emissions in near future.
提高植物光合作用以实现碳中和的全球气候目标是可行的。应用人工腐植酸(AHA)是促进植物光合作用的一种很有前途的方法,但 C3 和 C4 植物的相关机制仍不清楚。在这项研究中,首先使用实时叶绿素荧光参数和非侵入性微测试技术揭示了 AHA 应用对植物叶片细胞中实时叶绿素合成和微观生理变化的影响。转录组学表明,AHA 的应用上调了玉米中与光合作用相关的基因,特别是与叶绿素合成和光能捕获相关的基因,以及生菜中与光合作用活力和碳水化合物代谢过程相关的基因。结构方程模型表明,AHA 中的光降解物质和生长激素直接有助于 C4 植物的光合作用(0.37)。AHA 通过上调参与光捕获和转化的功能基因(如 Mg-CHLI 和叶绿素酶)间接促进 C4 植物的光合作用(0.96)。相比之下,AHA 主要通过增加叶绿素合成、Rubisco 活性和暗反应中的 ZmRbcS 表达来间接促进 C3 植物的光合作用(0.55)。此外,AHA 显著提高了 C3 植物叶片中的 Mg 转移和通量,间接有助于植物光合作用(0.24)。最后,AHA 使玉米的净光合速率提高了 46.50%,使生菜的净光合速率提高了 88.00%。富含营养物质和激素的 AHA 的应用甚至比传统的 Hoagland 溶液更能促进植物生长和光合作用。本研究揭示了 AHA 对 C3 和 C4 植物光合作用的不同促进机制,为 AHA 在绿色农业中的合成和高效应用提供了指导,并将提出发展 AHA 技术以应对未来因 CO 排放导致的气候变化。