Alsakhen Nada, Radwan Enas S, Zafer Imran, Abed Alfattah Husam, Shamkh Israa M, Rehman Md Tabish, Shahwan Moayad, Khan Khalid Ali, Ahmed Shimaa A
Department of Chemistry, Faculty of Science, The Hashemite University, Zarqa, Jordan.
Faculty of Science, Zarqa University, Zarqa, Jordan.
J Biomol Struct Dyn. 2024 Jan 28:1-21. doi: 10.1080/07391102.2024.2307445.
Breast cancer poses a significant global challenge, prompting researchers to explore novel approaches for potential treatments. In this study, we investigated the binding free energy (Δ) of bevacizumab, an anti-cancer therapy targeting angiogenesis through the inhibition of vascular endothelial growth factor (VEGF), with various proto-oncogenes including CDK4, EGFR, frizzled, IGFR, OmoMYC, and KIT. Our in-silico investigation revealed that hydrogen bonding is pivotal in inducing conformational changes within the DNA structure, impeding its replication and preventing cell death. Molecular docking results revealed the presence of crucial hydrogen bonds and supported the formation of stable bevacizumab complexes. The molecular docking scores for the tested complexes were CDK4 (Score = -7.2 kcal/mol), EGFR (Score = -8.5 kcal/mol), frizzled (Score = -6.9 kcal/mol), IGFR (Score = -7.8 kcal/mol), KIT (Score = -6.5 kcal/mol), and MYC (Score = -8.3 kcal/mol). The binding mode demonstrated vital hydrogen bonds correlated with the observed energy gap. Notably, the calculated binding free energies of the tested compounds are as follows: CDK4 (Δ = 24275.195 ± 6411.293 kJ/mol), EGFR (Δ = 363273.625 ± 8731.466 kJ/mol), frizzled (Δ = 181751.990 ± 28438.515 kJ/mol), IGFR (Δ = 162414.725 ± 10728.367 kJ/mol), KIT (Δ = 40162.585 ± 4331.017 kJ/mol), and MYC (Δ = 434783.463 ± 53989.676 kJ/mol). Furthermore, through extensive 100 ns MD simulations, we observed the formation of a stable bevacizumab complex structure. The simulations confirmed the stability of the bevacizumab complex with the proto-oncogenes. The results of this study highlight the potential of bevacizumab complex as a promising candidate for anticancer treatment. The identification of hydrogen bonding, along with the calculated binding free energies and molecular docking scores, provides valuable insights into the molecular interactions and stability of the bevacizumab complexes. These findings and the extensive MD simulations open new avenues for future research and development of bevacizumab as a targeted therapy for breast cancer and other related malignancies.Communicated by Ramaswamy H. Sarma.
乳腺癌是一项重大的全球性挑战,促使研究人员探索潜在治疗的新方法。在本研究中,我们研究了贝伐单抗(一种通过抑制血管内皮生长因子(VEGF)来靶向血管生成的抗癌疗法)与包括细胞周期蛋白依赖性激酶4(CDK4)、表皮生长因子受体(EGFR)、卷曲蛋白、胰岛素样生长因子受体(IGFR)、原癌基因c-Myc和干细胞生长因子受体(KIT)在内的各种原癌基因的结合自由能(Δ)。我们的计算机模拟研究表明,氢键在诱导DNA结构的构象变化、阻碍其复制并防止细胞死亡方面起着关键作用。分子对接结果显示存在关键氢键,并支持形成稳定的贝伐单抗复合物。测试复合物的分子对接分数分别为:CDK4(分数 = -7.2千卡/摩尔)、EGFR(分数 = -8.5千卡/摩尔)、卷曲蛋白(分数 = -6.9千卡/摩尔)、IGFR(分数 = -7.8千卡/摩尔)、KIT(分数 = -6.5千卡/摩尔)和Myc(分数 = -8.3千卡/摩尔)。结合模式显示出与观察到的能隙相关的重要氢键。值得注意的是,测试化合物的计算结合自由能如下:CDK4(Δ = 24275.195 ± 6411.293千焦/摩尔)、EGFR(Δ = 363273.625 ± 8731.466千焦/摩尔)、卷曲蛋白(Δ = 181751.990 ± 28438.515千焦/摩尔)、IGFR(Δ = 162414.725 ± 10728.367千焦/摩尔)、KIT(Δ = 40162.585 ± 4331.017千焦/摩尔)和Myc(Δ = 434783.463 ± 53989.676千焦/摩尔)。此外,通过广泛的100纳秒分子动力学(MD)模拟,我们观察到形成了稳定的贝伐单抗复合物结构。模拟证实了贝伐单抗复合物与原癌基因的稳定性。本研究结果突出了贝伐单抗复合物作为抗癌治疗有前景候选物的潜力。氢键的鉴定以及计算出的结合自由能和分子对接分数,为贝伐单抗复合物的分子相互作用和稳定性提供了有价值的见解。这些发现以及广泛的MD模拟为未来将贝伐单抗开发为乳腺癌和其他相关恶性肿瘤的靶向治疗开辟了新途径。由拉马斯瓦米·H·萨尔马传达。