Suppr超能文献

构建和验证与免疫细胞相关的端粒基因的分子亚型和特征,预测卵巢癌患者的预后和免疫治疗疗效。

Construction and validation of molecular subtype and signature of immune cell-related telomeric genes and prediction of prognosis and immunotherapy efficacy in ovarian cancer patients.

机构信息

Department of Acupuncture and Moxibustion, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Department of Medical Affairs, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

出版信息

J Gene Med. 2024 Jan;26(1):e3606. doi: 10.1002/jgm.3606.

Abstract

BACKGROUND

Ovarian cancer (OVC) has emerged as a fatal gynecological malignancy as a result of a lack of reliable methods for early detection, limited biomarkers and few treatment options. Immune cell-related telomeric genes (ICRTGs) show promise as potential biomarkers.

METHODS

ICRTGs were discovered using weighted gene co-expression network analysis (WGCNA). ICRTGs were screened for significant prognosis using one-way Cox regression analysis. Subsequently, molecular subtypes of prognosis-relevant ICRTGs were constructed and validated for OVC, and the immune microenvironment's landscape across subtypes was compared. OVC prognostic models were built and validated using prognosis-relevant ICRTGs. Additionally, chemotherapy susceptibility drugs for OVC patients in the low- and high-risk groups of ICRTGs were screened using genomics of drug susceptibility to cancer (GDSC). Finally, the immunotherapy response in the low- and high-risk groups was detected using the data from GSE78220. We conducted an immune index correlation analysis of ICRTGs with significant prognoses. The MAP3K4 gene, for which the prognostic correlation coefficient is the highest, was validated using tissue microarrays for a prognostic-immune index correlation.

RESULTS

WGCNA analysis constructed a gene set of ICRTGs and screened 22 genes with prognostic significance. Unsupervised clustering analysis revealed the best molecular typing for two subtypes. The Gene Set Variation Analysis algorithm was used to calculate telomere scores and validate the molecular subtyping. A prognostic model was constructed using 17 ICRTGs. In the The Cancer Genome Atlas-OVC training set and the Gene Expression Omnibus validation set (GSE30161), the risk score model's predicted risk groups and the actual prognosis were shown to be significantly correlated. GDSC screened Axitinib, Bexarotene, Embelin and the GSE78220 datasets and demonstrated that ICRTGs effectively distinguished the group that responds to immunotherapy from the non-responsive group. Additionally, tissue microarray validation results revealed that MAP3K4 significantly predicted patient prognosis. Furthermore, MAP3K4 exhibited a positive association with PD-L1 and a negative relationship with the M1 macrophage markers CD86 and INOS.

CONCLUSIONS

ICRTGs may be reliable biomarkers for the molecular typing of patients with OVC, enabling the prediction of prognosis and immunotherapy efficacy.

摘要

背景

卵巢癌(OVC)由于缺乏可靠的早期检测方法、有限的生物标志物和治疗选择,已成为一种致命的妇科恶性肿瘤。免疫细胞相关端粒基因(ICRTGs)作为潜在的生物标志物具有广阔的应用前景。

方法

采用加权基因共表达网络分析(WGCNA)方法发现 ICRTGs,采用单向 Cox 回归分析筛选显著预后 ICRTGs。随后构建并验证与预后相关的 ICRTGs 的分子亚型,比较各亚型的免疫微环境景观。利用预后相关的 ICRTGs 构建和验证 OVC 预后模型。此外,利用癌症药物敏感性基因组学(GDSC)筛选 ICRTGs 低风险和高风险组的 OVC 患者化疗敏感性药物。最后,利用 GSE78220 中的数据检测低风险和高风险组的免疫治疗反应。我们对具有显著预后的 ICRTGs 进行了免疫指数相关性分析。利用组织微阵列对预后相关系数最高的 MAP3K4 基因进行验证,以建立预后-免疫指数相关性。

结果

WGCNA 分析构建了 ICRTGs 的基因集,并筛选出 22 个具有预后意义的基因。无监督聚类分析显示两种亚型的最佳分子分型。使用基因集变异分析算法计算端粒评分并验证分子亚分型。利用 17 个 ICRTGs 构建了预后模型。在癌症基因组图谱-OVC 训练集和基因表达综合数据库验证集(GSE30161)中,风险评分模型的预测风险组与实际预后显著相关。GDSC 筛选出阿昔替尼、贝沙罗汀、恩贝林,并在 GSE78220 数据集上进行了验证,结果表明 ICRTGs 能有效地将对免疫治疗有反应的组与无反应的组区分开来。此外,组织微阵列验证结果表明 MAP3K4 显著预测了患者的预后。此外,MAP3K4 与 PD-L1 呈正相关,与 M1 巨噬细胞标志物 CD86 和 INOS 呈负相关。

结论

ICRTGs 可能是 OVC 患者分子分型的可靠生物标志物,可预测预后和免疫治疗效果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验