Wang Bingchun, Shi Liwen, Zhou Yiru, Wang Xinying, Liu Xi, Shen Dijun, Yang Qian, Xiao Shengfu, Zhang Jiacheng, Li Yunyong
School of Materials and Energy, Guangdong University of Technology, No. 100 Waihuan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.
Small. 2024 Jul;20(27):e2310736. doi: 10.1002/smll.202310736. Epub 2024 Jan 28.
2D alloy-based anodes show promise in potassium-ion batteries (PIBs). Nevertheless, their low tap density and huge volume expansion cause insufficient volumetric capacity and cycling stability. Herein, a 3D highly dense encapsulated architecture of 2D-Bi nanosheets (HD-Bi@G) with conducive elastic networks and 3D compact encapsulation structure of 2D nano-sheets are developed. As expected, HD-Bi@G anode exhibits a considerable volumetric capacity of 1032.2 mAh cm, stable long-life span with 75% retention after 2000 cycles, superior rate capability of 271.0 mAh g at 104 C, and high areal capacity of 7.94 mAh cm (loading: 24.2 mg cm) in PIBs. The superior volumetric and areal performance mechanisms are revealed through systematic kinetic investigations, ex situ characterization techniques, and theorical calculation. The 3D high-conductivity elastic network with dense encapsulated 2D-Bi architecture effectively relieves the volume expansion and pulverization of Bi nanosheets, maintains internal 2D structure with fast kinetics, and overcome sluggish ionic/electronic diffusion obstacle of ultra-thick, dense electrodes. The uniquely encapsulated 2D-nanosheet structure greatly reduces K diffusion energy barrier and accelerates K diffusion kinetics. These findings validate a feasible approach to fabricate 3D dense encapsulated architectures of 2D-alloy nanosheets with conductive elastic networks, enabling the design of ultra-thick, dense electrodes for high-volumetric-energy-density energy storage.
二维合金基负极在钾离子电池(PIB)中展现出应用前景。然而,它们的振实密度低和巨大的体积膨胀导致体积容量不足和循环稳定性差。在此,开发了一种具有有利弹性网络的二维铋纳米片的三维高密度封装结构(HD-Bi@G)以及二维纳米片的三维紧凑封装结构。正如预期的那样,HD-Bi@G负极在钾离子电池中表现出可观的体积容量,为1032.2 mAh/cm³,具有稳定的长寿命,在2000次循环后保持75%的容量,在104 C时具有271.0 mAh/g的优异倍率性能,以及7.94 mAh/cm²的高面积容量(负载量:24.2 mg/cm²)。通过系统的动力学研究、非原位表征技术和理论计算揭示了优异的体积和面积性能机制。具有密集封装二维铋结构的三维高导电弹性网络有效地缓解了铋纳米片的体积膨胀和粉化,以快速动力学维持内部二维结构,并克服了超厚、致密电极缓慢的离子/电子扩散障碍。独特的封装二维纳米片结构大大降低了钾扩散能垒并加速了钾扩散动力学。这些发现验证了一种可行的方法来制造具有导电弹性网络的二维合金纳米片的三维致密封装结构,从而能够设计用于高体积能量密度储能的超厚、致密电极。