State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China.
Compr Rev Food Sci Food Saf. 2024 Jan;23(1):e13280. doi: 10.1111/1541-4337.13280.
In recent years, investigations on molecular interaction mechanisms between food proteins and ligands have attracted much interest. The interaction mechanisms can supply much useful information for many fields in the food industry, including nutrient delivery, food processing, auxiliary detection, and others. Molecular simulation has offered extraordinary insights into the interaction mechanisms. It can reflect binding conformation, interaction forces, binding affinity, key residues, and other information that physicochemical experiments cannot reveal in a fast and detailed manner. The simulation results have proven to be consistent with the results of physicochemical experiments. Molecular simulation holds great potential for future applications in the field of food protein-ligand interactions. This review elaborates on the principles of molecular docking and molecular dynamics simulation. Besides, their applications in food protein-ligand interactions are summarized. Furthermore, challenges, perspectives, and trends in molecular simulation of food protein-ligand interactions are proposed. Based on the results of molecular simulation, the mechanisms of interfacial behavior, enzyme-substrate binding, and structural changes during food processing can be reflected, and strategies for hazardous substance detection and food flavor adjustment can be generated. Moreover, molecular simulation can accelerate food development and reduce animal experiments. However, there are still several challenges to applying molecular simulation to food protein-ligand interaction research. The future trends will be a combination of international cooperation and data sharing, quantum mechanics/molecular mechanics, advanced computational techniques, and machine learning, which contribute to promoting food protein-ligand interaction simulation. Overall, the use of molecular simulation to study food protein-ligand interactions has a promising prospect.
近年来,食品蛋白质与配体之间的分子相互作用机制的研究引起了广泛关注。这些相互作用机制为食品工业的许多领域提供了有价值的信息,包括营养物质输送、食品加工、辅助检测等。分子模拟为研究这些相互作用机制提供了新的思路和方法。它可以快速、详细地反映结合构象、相互作用力、结合亲和力、关键残基等信息,而这些信息是物理化学实验无法揭示的。模拟结果已被证明与物理化学实验结果一致。分子模拟在食品蛋白质-配体相互作用领域具有广阔的应用前景。本文详细阐述了分子对接和分子动力学模拟的原理及其在食品蛋白质-配体相互作用研究中的应用。此外,还提出了分子模拟在食品蛋白质-配体相互作用研究中面临的挑战、展望和发展趋势。基于分子模拟的结果,可以反映食品加工过程中的界面行为、酶-底物结合以及结构变化等机制,为有害物质检测和食品风味调控提供策略。此外,分子模拟可以加速食品开发,减少动物实验。然而,将分子模拟应用于食品蛋白质-配体相互作用研究仍面临一些挑战。未来的发展趋势将是国际合作和数据共享、量子力学/分子力学、先进计算技术和机器学习的结合,这将有助于推动食品蛋白质-配体相互作用模拟的发展。总的来说,利用分子模拟研究食品蛋白质-配体相互作用具有广阔的应用前景。