Suppr超能文献

利用分子模拟和基于集合的配体对接技术研究 SARS-CoV-2 刺突三聚体构象中的结合口袋,以筛选别构抑制剂。

Exploring Binding Pockets in the Conformational States of the SARS-CoV-2 Spike Trimers for the Screening of Allosteric Inhibitors Using Molecular Simulations and Ensemble-Based Ligand Docking.

机构信息

Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA.

Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA.

出版信息

Int J Mol Sci. 2024 May 1;25(9):4955. doi: 10.3390/ijms25094955.

Abstract

Understanding mechanisms of allosteric regulation remains elusive for the SARS-CoV-2 spike protein, despite the increasing interest and effort in discovering allosteric inhibitors of the viral activity and interactions with the host receptor ACE2. The challenges of discovering allosteric modulators of the SARS-CoV-2 spike proteins are associated with the diversity of cryptic allosteric sites and complex molecular mechanisms that can be employed by allosteric ligands, including the alteration of the conformational equilibrium of spike protein and preferential stabilization of specific functional states. In the current study, we combine conformational dynamics analysis of distinct forms of the full-length spike protein trimers and machine-learning-based binding pocket detection with the ensemble-based ligand docking and binding free energy analysis to characterize the potential allosteric binding sites and determine structural and energetic determinants of allosteric inhibition for a series of experimentally validated allosteric molecules. The results demonstrate a good agreement between computational and experimental binding affinities, providing support to the predicted binding modes and suggesting key interactions formed by the allosteric ligands to elicit the experimentally observed inhibition. We establish structural and energetic determinants of allosteric binding for the experimentally known allosteric molecules, indicating a potential mechanism of allosteric modulation by targeting the hinges of the inter-protomer movements and blocking conformational changes between the closed and open spike trimer forms. The results of this study demonstrate that combining ensemble-based ligand docking with conformational states of spike protein and rigorous binding energy analysis enables robust characterization of the ligand binding modes, the identification of allosteric binding hotspots, and the prediction of binding affinities for validated allosteric modulators, which is consistent with the experimental data. This study suggested that the conformational adaptability of the protein allosteric sites and the diversity of ligand bound conformations are both in play to enable efficient targeting of allosteric binding sites and interfere with the conformational changes.

摘要

尽管人们越来越有兴趣并努力发现病毒活性和与宿主受体 ACE2 相互作用的变构抑制剂,但仍然难以理解 SARS-CoV-2 刺突蛋白的变构调节机制。发现 SARS-CoV-2 刺突蛋白变构调节剂的挑战与隐藏的变构位点的多样性以及变构配体可采用的复杂分子机制有关,包括改变刺突蛋白的构象平衡和优先稳定特定功能状态。在本研究中,我们将全长刺突蛋白三聚体的不同构象动力学分析与基于机器学习的结合口袋检测、基于集合的配体对接和结合自由能分析相结合,以表征潜在的变构结合位点,并确定一系列经实验验证的变构分子的变构抑制的结构和能量决定因素。结果表明计算和实验结合亲和力之间具有良好的一致性,为预测的结合模式提供了支持,并表明变构配体形成的关键相互作用,以引起实验观察到的抑制作用。我们确定了实验已知变构分子的变构结合的结构和能量决定因素,表明通过靶向互变构体运动的铰链和阻断封闭和开放刺突三聚体形式之间的构象变化来进行变构调节的潜在机制。这项研究的结果表明,将基于集合的配体对接与刺突蛋白的构象状态和严格的结合能分析相结合,能够对配体结合模式进行稳健的表征,确定变构结合热点,并预测经验证的变构调节剂的结合亲和力,这与实验数据一致。本研究表明,蛋白质变构位点的构象适应性和配体结合构象的多样性都在起作用,以实现变构结合位点的有效靶向并干扰构象变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e15d/11084335/83e0a9593295/ijms-25-04955-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验