UCIBIO, Applied Molecular Biosciences Unit, Department of Biological Sciences, Faculty of Pharmacy, University of Porto , Porto, Portugal.
Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto , Porto, Portugal.
J Clin Microbiol. 2024 Feb 14;62(2):e0121123. doi: 10.1128/jcm.01211-23. Epub 2024 Jan 29.
The reliability of Fourier-transform infrared (FT-IR) spectroscopy for typing and outbreak control has been previously assessed, but issues remain in standardization and reproducibility. We developed and validated a reproducible FT-IR with attenuated total reflectance (ATR) workflow for the identification of lineages. We used 293 isolates representing multidrug-resistant lineages causing outbreaks worldwide (2002-2021) to train a random forest classification (RF) model based on capsular (KL)-type discrimination. This model was validated with 280 contemporaneous isolates (2021-2022), using sequencing and whole-genome sequencing as references. Repeatability and reproducibility were tested in different culture media and instruments throughout time. Our RF model allowed the classification of 33 capsular (KL)-types and up to 36 clinically relevant lineages based on the discrimination of specific KL- and O-type combinations. We obtained high rates of accuracy (89%), sensitivity (88%), and specificity (92%), including from cultures obtained directly from the clinical sample, allowing to obtain typing information the same day bacteria are identified. The workflow was reproducible in different instruments throughout time (>98% correct predictions). Direct colony application, spectral acquisition, and automated KL prediction through Clover MS Data analysis software allow a short time-to-result (5 min/isolate). We demonstrated that FT-IR ATR spectroscopy provides meaningful, reproducible, and accurate information at a very early stage (as soon as bacterial identification) to support infection control and public health surveillance. The high robustness together with automated and flexible workflows for data analysis provide opportunities to consolidate real-time applications at a global level. IMPORTANCE We created and validated an automated and simple workflow for the identification of clinically relevant lineages by FT-IR spectroscopy and machine-learning, a method that can be extremely useful to provide quick and reliable typing information to support real-time decisions of outbreak management and infection control. This method and workflow is of interest to support clinical microbiology diagnostics and to aid public health surveillance.
傅里叶变换红外(FT-IR)光谱技术在鉴定和暴发控制方面的可靠性此前已得到评估,但在标准化和可重复性方面仍存在问题。我们开发并验证了一种具有衰减全反射(ATR)功能的可重复 FT-IR 工作流程,用于鉴定谱系。我们使用 293 株代表全球暴发的多药耐药谱系的分离株(2002-2021 年)来训练基于荚膜(KL)型鉴别分类的随机森林分类(RF)模型。该模型使用 280 株同期分离株(2021-2022 年)进行验证,参考方法为测序和全基因组测序。重复性和再现性在不同的培养基和仪器中进行了测试。我们的 RF 模型允许根据特定 KL 型和 O 型组合的鉴别对 33 种荚膜(KL)型和多达 36 种临床相关谱系进行分类。我们获得了高准确率(89%)、高灵敏度(88%)和高特异性(92%),包括从直接从临床样本中获得的培养物中获得的信息,使我们能够在同一天获得细菌鉴定时获得分型信息。该工作流程在不同仪器中的重现性也很高(>98%的正确预测)。直接的菌落应用、光谱采集以及通过 Clover MS Data 分析软件的自动 KL 预测可实现 5 分钟/株的短检测时间。我们证明 FT-IR ATR 光谱学在非常早期(一旦进行细菌鉴定)即可提供有意义、可重复和准确的信息,以支持感染控制和公共卫生监测。该方法具有高度的稳健性,以及用于数据分析的自动化和灵活的工作流程,为在全球范围内整合实时应用提供了机会。重要性我们创建并验证了一种通过 FT-IR 光谱和机器学习自动识别临床相关谱系的简单工作流程,这种方法可以非常有用,能够提供快速可靠的分型信息,以支持暴发管理和感染控制的实时决策。该方法和工作流程对于支持临床微生物学诊断和辅助公共卫生监测具有重要意义。