UCIBIO, Applied Molecular Biosciences Unit, Department of Biological Sciences, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, Porto, Portugal.
Unidad de Genómica Traslacional Hospital Universitario Ramón y Cajal (IRYCIS), Madrid, Spain.
Microbiol Spectr. 2023 Jun 15;11(3):e0339522. doi: 10.1128/spectrum.03395-22. Epub 2023 Apr 26.
Klebsiella pneumoniae sequence type 14 (ST14) and ST15 caused outbreaks of CTX-M-15 and/or carbapenemase producers worldwide, but their phylogeny and global dynamics remain unclear. We clarified the evolution of K. pneumoniae clonal group 14 (CG14) and CG15 by analyzing the capsular locus (KL), resistome, virulome, and plasmidome of public genomes ( = 481) and sequences ( = 9) representing main sublineages circulating in Portugal. CG14 and CG15 evolved independently within 6 main subclades defined according to the KL and the accessory genome. The CG14 ( = 65) clade was structured in two large monophyletic subclades, CG14-I (KL2, 86%) and CG14-II (KL16, 14%), whose emergences were dated to 1932 and 1911, respectively. Genes encoding extended-spectrum β-lactamase (ESBL), AmpC, and/or carbapenemases were mostly observed in CG14-I (71% versus 22%). CG15 clade ( = 170) was segregated into subclades CG15-IA (KL19/KL106, 9%), CG15-IB (variable KL types, 6%), CG15-IIA (KL24, 43%) and CG15-IIB (KL112, 37%). Most CG15 genomes carried specific GyrA and ParC mutations and emerged from a common ancestor in 1989. CTX-M-15 was especially prevalent in CG15 (68% CG15 versus 38% CG14) and in CG15-IIB (92%). Plasmidome analysis revealed 27 predominant plasmid groups (PG), including particularly pervasive and recombinant F-type ( = 10), Col ( = 10), and new plasmid types. While was acquired multiple times by a high diversity of F-type mosaic plasmids, other antibiotic resistance genes (ARGs) were dispersed by IncL () or IncC () plasmids. We first demonstrate an independent evolutionary trajectory for CG15 and CG14 and how the acquisition of specific KL, quinolone-resistance determining region (QRDR) mutations (CG15), and ARGs in highly recombinant plasmids could have shaped the expansion and diversification of particular subclades (CG14-I and CG15-IIA/IIB). Klebsiella pneumoniae represents a major threat in the burden of antibiotic resistance (ABR). Available studies to explain the origin, the diversity, and the evolution of certain ABR K. pneumoniae populations have mainly been focused on a few clonal groups (CGs) using phylogenetic analysis of the core genome, the accessory genome being overlooked. Here, we provide unique insights into the phylogenetic evolution of CG14 and CG15, two poorly characterized CGs which have contributed to the global dissemination of genes responsible for resistance to first-line antibiotics such as β-lactams. Our results point out an independent evolution of these two CGs and highlight the existence of different subclades structured by the capsular type and the accessory genome. Moreover, the contribution of a turbulent flux of plasmids (especially multireplicon F type and Col) and adaptive traits (antibiotic resistance and metal tolerance genes) to the pangenome reflect the exposure and adaptation of K. pneumoniae under different selective pressures.
肺炎克雷伯菌 14 型(ST14)和 ST15 在全球范围内引起了 CTX-M-15 和/或碳青霉烯酶产生菌的爆发,但它们的系统发育和全球动态仍不清楚。我们通过分析公共基因组( = 481)和序列( = 9)的荚膜基因座(KL)、耐药组、毒力组和质粒组,阐明了肺炎克雷伯菌克隆群 14(CG14)和 CG15 的进化,这些序列主要代表了在葡萄牙流行的主要亚谱系。CG14 和 CG15 在根据 KL 和辅助基因组定义的 6 个主要亚谱系中独立进化。CG14( = 65)分支分为两个大的单系亚分支,CG14-I(KL2,86%)和 CG14-II(KL16,14%),它们的出现分别可追溯到 1932 年和 1911 年。编码扩展谱β-内酰胺酶(ESBL)、AmpC 和/或碳青霉烯酶的基因主要存在于 CG14-I(71%比 22%)中。CG15 分支( = 170)分为亚分支 CG15-IA(KL19/KL106,9%)、CG15-IB(可变 KL 类型,6%)、CG15-IIA(KL24,43%)和 CG15-IIB(KL112,37%)。大多数 CG15 基因组携带特定的 GyrA 和 ParC 突变,并于 1989 年从一个共同的祖先中出现。CTX-M-15 在 CG15 中尤为普遍(CG15 中的 68%比 CG14 中的 38%),在 CG15-IIB 中更为普遍(92%)。质粒组分析显示了 27 个主要的质粒组(PG),包括特别普遍和重组的 F 型( = 10)、Col 型( = 10)和新型质粒。虽然 是由多种多样性的 F 型马赛克质粒多次获得的,但其他抗生素耐药基因(ARGs)则通过 IncL()或 IncC()质粒分散。我们首次证明了 CG15 和 CG14 的独立进化轨迹,以及特定 KL、喹诺酮耐药决定区(QRDR)突变(CG15)的获得以及高度重组质粒中 ARGs 的获得,如何塑造了特定亚分支(CG14-I 和 CG15-IIA/IIB)的扩张和多样化。肺炎克雷伯菌在抗生素耐药性(ABR)负担中构成了重大威胁。目前的研究主要集中在少数几个克隆群(CGs)上,通过核心基因组的系统发育分析来解释某些 ABR 肺炎克雷伯菌种群的起源、多样性和进化,而忽略了辅助基因组。在这里,我们提供了对 CG14 和 CG15 系统发育进化的独特见解,这两个 CGs 特征描述较差,它们促成了负责抵抗一线抗生素(如β-内酰胺类)的基因在全球的传播。我们的研究结果表明,这两个 CGs 存在独立的进化,并强调了存在不同的亚分支,这些亚分支由荚膜类型和辅助基因组结构。此外,质粒(尤其是多复制子 F 型和 Col)和适应性特征(抗生素耐药性和金属耐受性基因)的动荡通量对泛基因组的贡献反映了肺炎克雷伯菌在不同选择压力下的暴露和适应。