Suppr超能文献

关于Marcus-Hush理论在氧化物中小极化子化学动力学中的应用:其与Holstein模型的关系及晶格轨道对称性的重要性。

On the application of Marcus-Hush theory to small polaron chemical dynamics in oxides: its relationship to the Holstein model and the importance of lattice-orbital symmetries.

作者信息

Wang Zi, Miglani Bobby, Yuan Shuaishuai, Bevan Kirk H

机构信息

Division of Materials Engineering, Faculty of Engineering, McGill University, Montréal, Québec, Canada.

Centre for the Physics of Materials, McGill University, Montréal, Québec, Canada.

出版信息

Phys Chem Chem Phys. 2024 Feb 7;26(6):4812-4827. doi: 10.1039/d3cp05218d.

Abstract

The chemical dynamics of small polaron hopping within oxides is often interpreted through two-site variations on Marcus-Hush theory, while from a physics perspective small polaron hopping is more often approached from Holstein's solid-state formalism. Here we seek to provide a chemically oriented viewpoint, focusing on small polaron hopping in oxides, concerning these two phenomenological frameworks by employing both tight-binding modelling and first-principles calculations. First, within a semiclassical approach the Marcus-Hush relations are overviewed as a two-site reduction of Holstein's model. Within the single-band regime, similarities and differences between Holstein derived small polaron hopping and the Marcus-Hush model are also discussed. In this context the emergence of adiabaticity (or, conversely, diabaticity) is also explored within each framework both analytically and by directly evolving the system wavefunction. Then, through first-principles calculations of select oxides we explore how coupled lattice and orbital symmetries can impact on hopping properties - in a manner that is quite distinct typical chemical applications of Marcus-Hush theory. These results are then related back to the Holstein model to explore the relative applicability of the two frameworks towards interpreting small polaron hopping properties, where it is emphasized that the Holstein model offers an increasingly more appealing physicochemical interpretation of hopping processes as band and/or coupling interactions increase. Overall, this work aims to strengthen the physically oriented exploration of small polarons and their physicochemical properties in the growing oxide chemistry community.

摘要

氧化物中小极化子跳跃的化学动力学通常通过Marcus-Hush理论的双位点变体来解释,而从物理学角度来看,小极化子跳跃更多是从Holstein的固态形式理论入手。在此,我们试图提供一个以化学为导向的观点,聚焦于氧化物中的小极化子跳跃,通过运用紧束缚模型和第一性原理计算来探讨这两种唯象学框架。首先,在半经典方法中,Marcus-Hush关系被概述为Holstein模型的双位点简化。在单能带体系内,还讨论了Holstein导出的小极化子跳跃与Marcus-Hush模型之间的异同。在此背景下,还在每个框架内通过解析和直接演化系统波函数来探索绝热性(或相反的非绝热性)的出现。然后,通过对选定氧化物的第一性原理计算,我们探究晶格和轨道对称性的耦合如何影响跳跃性质——其方式与Marcus-Hush理论的典型化学应用截然不同。这些结果随后与Holstein模型相关联,以探索这两种框架在解释小极化子跳跃性质方面的相对适用性,其中强调随着能带和/或耦合相互作用的增加,Holstein模型对跳跃过程提供了越来越有吸引力的物理化学解释。总体而言,这项工作旨在加强在不断发展的氧化物化学领域中对小极化子及其物理化学性质的以物理为导向的探索。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验