Suppr超能文献

能带图对串联光催化电池动力学和热力学工程的见解

Band Diagram Insights into the Kinetic and Thermodynamic Engineering of Tandem Photocatalytic Cells.

作者信息

Goyal Aastha, Zhu Yuanhui, Bevan Kirk H

机构信息

Division of Materials Engineering, Faculty of Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada.

Centre for the Physics of Materials, Department of Physics, McGill University, Montreal, Quebec H3A 2T8, Canada.

出版信息

J Phys Chem C Nanomater Interfaces. 2024 Oct 23;128(43):18465-18482. doi: 10.1021/acs.jpcc.4c04508. eCollection 2024 Oct 31.

Abstract

In this work, we theoretically investigate the impact of kinetic and thermodynamic properties on the performance of photocatalytic cells operating in an unassisted tandem configuration, including electron affinity and ionization energies, recombination rates, and reaction rates. To this end, we present general rules and metrics for identifying and isolating the origin of an observed shift in the onset potential at either the photoanode or the photocathode of these devices. The correlation between kinetic and thermodynamic shifts in the onset potential is demonstrated through the use of band diagrams and key comparable features within readily accessible characterization tools: current-voltage plots are taken both under illumination and in the dark and further coupled with Mott-Schottky plots. To illustrate this conceptual framework, a model system comprised of a p-type doped BiVO photocathode and an n-type doped BiVO photoanode is employed. By varying each of the aforementioned kinetic and thermodynamic parameters in isolation, the manner in which these various mechanisms shift the onset potential is demonstrated. This work intends to showcase how kinetic and thermodynamic effects are distinctly manifested in these commonly used characterization tools and further proposes thermodynamic band-edge engineering as a potentially useful and largely unexplored avenue for possibly improving tandem cell performance, in addition to the conventional approach of optimizing kinetics.

摘要

在这项工作中,我们从理论上研究了动力学和热力学性质对以无辅助串联配置运行的光催化电池性能的影响,包括电子亲和能和电离能、复合率以及反应速率。为此,我们提出了用于识别和分离这些器件的光阳极或光阴极处观察到的起始电位偏移起源的一般规则和指标。通过使用能带图以及易于获取的表征工具中的关键可比特征,证明了起始电位的动力学和热力学偏移之间的相关性:在光照和黑暗条件下都进行电流-电压测量,并进一步结合莫特-肖特基曲线。为了说明这个概念框架,采用了一个由p型掺杂的BiVO光阴极和n型掺杂的BiVO光阳极组成的模型系统。通过单独改变上述每个动力学和热力学参数,展示了这些不同机制使起始电位发生偏移的方式。这项工作旨在展示动力学和热力学效应如何在这些常用的表征工具中明显体现,并进一步提出热力学带边工程作为一种潜在有用且在很大程度上未被探索的途径,除了优化动力学的传统方法之外,还可能用于改善串联电池的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1027/11534008/23b54cbd0480/jp4c04508_0001.jpg

相似文献

1
Band Diagram Insights into the Kinetic and Thermodynamic Engineering of Tandem Photocatalytic Cells.
J Phys Chem C Nanomater Interfaces. 2024 Oct 23;128(43):18465-18482. doi: 10.1021/acs.jpcc.4c04508. eCollection 2024 Oct 31.
3
Photoelectrochemical performance of a spin coated TiO protected BiVO-CuO thin film tandem cell for unassisted solar water splitting.
RSC Adv. 2022 Nov 2;12(48):31380-31391. doi: 10.1039/d2ra05774c. eCollection 2022 Oct 27.
4
Assessment of a W:BiVO-CuBiOTandem Photoelectrochemical Cell for Overall Solar Water Splitting.
ACS Appl Mater Interfaces. 2020 Mar 25;12(12):13959-13970. doi: 10.1021/acsami.0c00696. Epub 2020 Mar 10.
5
Photoelectrochemical performance of a nanostructured BiVO/NiOOH/FeOOH-CuO/CuO/TiO tandem cell for unassisted solar water splitting.
Nanoscale Adv. 2024 Mar 19;6(9):2407-2418. doi: 10.1039/d4na00088a. eCollection 2024 Apr 30.
6
7
BiVO-Liquid Junction Photovoltaic Cell with 0.2% Solar Energy Conversion Efficiency.
J Am Chem Soc. 2023 Nov 29;145(47):25797-25805. doi: 10.1021/jacs.3c09546. Epub 2023 Nov 14.
9
Integrating a Semitransparent, Fullerene-Free Organic Solar Cell in Tandem with a BiVO Photoanode for Unassisted Solar Water Splitting.
ACS Appl Mater Interfaces. 2017 Jul 12;9(27):22449-22455. doi: 10.1021/acsami.7b04486. Epub 2017 Jun 29.

本文引用的文献

3
Enhancing photocatalytic CO reduction with TiO-based materials: Strategies, mechanisms, challenges, and perspectives.
Environ Sci Ecotechnol. 2023 Dec 16;20:100368. doi: 10.1016/j.ese.2023.100368. eCollection 2024 Jul.
4
Tandem cells for unbiased photoelectrochemical water splitting.
Chem Soc Rev. 2023 Jul 17;52(14):4644-4671. doi: 10.1039/d3cs00145h.
6
Solar-to-hydrogen efficiency of more than 9% in photocatalytic water splitting.
Nature. 2023 Jan;613(7942):66-70. doi: 10.1038/s41586-022-05399-1. Epub 2023 Jan 4.
7
Low-bias photoelectrochemical water splitting via mediating trap states and small polaron hopping.
Nat Commun. 2022 Oct 20;13(1):6231. doi: 10.1038/s41467-022-33905-6.
9
Nanocarbon-Enhanced 2D Photoelectrodes: A New Paradigm in Photoelectrochemical Water Splitting.
Nanomicro Lett. 2020 Nov 13;13(1):24. doi: 10.1007/s40820-020-00545-8.
10
Evolution of Surface Oxidation on TaN as Probed by a Photoelectrochemical Method.
ACS Appl Mater Interfaces. 2021 Apr 21;13(15):17420-17428. doi: 10.1021/acsami.0c21780. Epub 2021 Apr 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验