Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut
Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut.
J Nucl Med. 2018 Sep;59(9):1480-1486. doi: 10.2967/jnumed.117.203000. Epub 2018 Feb 9.
Respiratory motion degrades the detection and quantification capabilities of PET/CT imaging. Moreover, mismatch between a fast helical CT image and a time-averaged PET image due to respiratory motion results in additional attenuation correction artifacts and inaccurate localization. Current motion compensation approaches typically have 3 limitations: the mismatch among respiration-gated PET images and the CT attenuation correction (CTAC) map can introduce artifacts in the gated PET reconstructions that can subsequently affect the accuracy of the motion estimation; sinogram-based correction approaches do not correct for intragate motion due to intracycle and intercycle breathing variations; and the mismatch between the PET motion compensation reference gate and the CT image can cause an additional CT-mismatch artifact. In this study, we established a motion correction framework to address these limitations. In the proposed framework, the combined emission-transmission reconstruction algorithm was used for phase-matched gated PET reconstructions to facilitate the motion model building. An event-by-event nonrigid respiratory motion compensation method with correlations between internal organ motion and external respiratory signals was used to correct both intracycle and intercycle breathing variations. The PET reference gate was automatically determined by a newly proposed CT-matching algorithm. We applied the new framework to 13 human datasets with 3 different radiotracers and 323 lesions and compared its performance with CTAC and non-attenuation correction (NAC) approaches. Validation using 4-dimensional CT was performed for one lung cancer dataset. For the 10 F-FDG studies, the proposed method outperformed ( < 0.006) both the CTAC and the NAC methods in terms of region-of-interest-based SUV, SUV, and SUV ratio improvements over no motion correction (SUV: 19.9% vs. 14.0% vs. 13.2%; SUV: 15.5% vs. 10.8% vs. 10.6%; SUV ratio: 24.1% vs. 17.6% vs. 16.2%, for the proposed, CTAC, and NAC methods, respectively). The proposed method increased SUV ratios over no motion correction for 94.4% of lesions, compared with 84.8% and 86.4% using the CTAC and NAC methods, respectively. For the 2 F-fluoropropyl-(+)-dihydrotetrabenazine studies, the proposed method reduced the CT-mismatch artifacts in the lower lung where the CTAC approach failed and maintained the quantification accuracy of bone marrow where the NAC approach failed. For the F-FMISO study, the proposed method outperformed both the CTAC and the NAC methods in terms of motion estimation accuracy at 2 lung lesion locations. The proposed PET/CT respiratory event-by-event motion-correction framework with motion information derived from matched attenuation-corrected PET data provides image quality superior to that of the CTAC and NAC methods for multiple tracers.
呼吸运动降低了 PET/CT 成像的检测和定量能力。此外,由于呼吸运动导致快速螺旋 CT 图像与时间平均 PET 图像之间不匹配,会导致额外的衰减校正伪影和定位不准确。目前的运动补偿方法通常有 3 个局限性:呼吸门控 PET 图像与 CT 衰减校正 (CTAC) 图之间的不匹配会在门控 PET 重建中引入伪影,从而影响运动估计的准确性;基于正电子发射断层扫描 (PET) 扫描的校正方法不能纠正由于周期性和周期性呼吸变化引起的门内运动;PET 运动补偿参考门与 CT 图像之间的不匹配会导致额外的 CT 不匹配伪影。在这项研究中,我们建立了一个运动校正框架来解决这些局限性。在所提出的框架中,使用联合发射-传输重建算法进行相位匹配门控 PET 重建,以方便运动模型的建立。使用事件相关的非刚性呼吸运动补偿方法,将内部器官运动与外部呼吸信号相关联,对周期性和周期性呼吸变化进行校正。通过新提出的 CT 匹配算法自动确定 PET 参考门。我们将新框架应用于 13 个人类数据集,其中包含 3 种不同的放射性示踪剂和 323 个病变,并将其性能与 CTAC 和非衰减校正 (NAC) 方法进行了比较。对一个肺癌数据集进行了 4 维 CT 验证。对于 10 个 F-FDG 研究,与 CTAC 和 NAC 方法相比,所提出的方法在无运动校正时的感兴趣区域 SUV、SUV 和 SUV 比值的改善方面表现更好(SUV:19.9%比 14.0%比 13.2%;SUV:15.5%比 10.8%比 10.6%;SUV 比值:24.1%比 17.6%比 16.2%,分别为提出的方法、CTAC 和 NAC 方法)。与 CTAC 和 NAC 方法相比,该方法使 94.4%的病变 SUV 比值超过无运动校正,而 CTAC 和 NAC 方法分别为 84.8%和 86.4%。对于 2 个 F-氟丙基-(+)-二氢四苯并嗪研究,与 CTAC 方法失败的下肺相比,该方法减少了 CT 不匹配伪影,与 NAC 方法失败的骨髓相比,保持了定量准确性。对于 F-FMISO 研究,所提出的方法在 2 个肺病变位置的运动估计准确性方面优于 CTAC 和 NAC 方法。该研究提出的 PET/CT 呼吸事件相关的运动校正框架,使用从匹配衰减校正的 PET 数据中提取的运动信息,为多种示踪剂提供了优于 CTAC 和 NAC 方法的图像质量。