Suppr超能文献

基于 CT 的锁骨骨化放射学年龄评估:深度学习提高准确性。

Radiological age assessment based on clavicle ossification in CT: enhanced accuracy through deep learning.

机构信息

Department of Radiology, LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany.

Munich Center for Machine Learning (MCML), Geschwister-Scholl-Platz 1, 80539, Munich, Germany.

出版信息

Int J Legal Med. 2024 Jul;138(4):1497-1507. doi: 10.1007/s00414-024-03167-6. Epub 2024 Jan 30.

Abstract

BACKGROUND

Radiological age assessment using reference studies is inherently limited in accuracy due to a finite number of assignable skeletal maturation stages. To overcome this limitation, we present a deep learning approach for continuous age assessment based on clavicle ossification in computed tomography (CT).

METHODS

Thoracic CT scans were retrospectively collected from the picture archiving and communication system. Individuals aged 15.0 to 30.0 years examined in routine clinical practice were included. All scans were automatically cropped around the medial clavicular epiphyseal cartilages. A deep learning model was trained to predict a person's chronological age based on these scans. Performance was evaluated using mean absolute error (MAE). Model performance was compared to an optimistic human reader performance estimate for an established reference study method.

RESULTS

The deep learning model was trained on 4,400 scans of 1,935 patients (training set: mean age = 24.2 years ± 4.0, 1132 female) and evaluated on 300 scans of 300 patients with a balanced age and sex distribution (test set: mean age = 22.5 years ± 4.4, 150 female). Model MAE was 1.65 years, and the highest absolute error was 6.40 years for females and 7.32 years for males. However, performance could be attributed to norm-variants or pathologic disorders. Human reader estimate MAE was 1.84 years and the highest absolute error was 3.40 years for females and 3.78 years for males.

CONCLUSIONS

We present a deep learning approach for continuous age predictions using CT volumes highlighting the medial clavicular epiphyseal cartilage with performance comparable to the human reader estimate.

摘要

背景

由于可分配的骨骼成熟阶段数量有限,使用参考研究进行放射年龄评估在准确性上存在固有局限性。为了克服这一局限性,我们提出了一种基于 CT 锁骨骨化的深度学习方法,用于连续年龄评估。

方法

从影像归档和通信系统中回顾性地收集了胸部 CT 扫描。纳入了在常规临床实践中检查的年龄在 15.0 至 30.0 岁的个体。所有扫描均自动围绕内侧锁骨骺软骨裁剪。训练了一个深度学习模型,根据这些扫描预测个体的实际年龄。使用平均绝对误差(MAE)评估性能。将模型性能与既定参考研究方法的乐观人工读者性能估计进行比较。

结果

深度学习模型在 1935 名患者的 4400 次扫描(训练集:平均年龄=24.2 岁±4.0,女性 1132 人)上进行了训练,并在 300 名具有平衡年龄和性别分布的患者的 300 次扫描(测试集:平均年龄=22.5 岁±4.4,女性 150 人)上进行了评估。模型的 MAE 为 1.65 岁,女性的最大绝对误差为 6.40 岁,男性为 7.32 岁。然而,性能可能归因于正态变异或病理障碍。人工读者估计的 MAE 为 1.84 岁,女性的最大绝对误差为 3.40 岁,男性为 3.78 岁。

结论

我们提出了一种基于 CT 容积的深度学习方法,用于连续年龄预测,突出了内侧锁骨骺软骨,其性能可与人工读者估计相媲美。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa36/11164764/66e08c43c949/414_2024_3167_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验