Suppr超能文献

基于深度学习的 3D 膝关节 MRI 对年轻个体的自动年龄估计。

Automated age estimation of young individuals based on 3D knee MRI using deep learning.

机构信息

Medical and Industrial Image Processing, University of Applied Sciences of Wedel, Feldstraße 143, 22880, Wedel, Germany.

Department of Legal Medicine, University Medical Center Hamburg-Eppendorf (UKE), Butenfeld 34, 22529, Hamburg, Germany.

出版信息

Int J Legal Med. 2021 Mar;135(2):649-663. doi: 10.1007/s00414-020-02465-z. Epub 2020 Dec 17.

Abstract

Age estimation is a crucial element of forensic medicine to assess the chronological age of living individuals without or lacking valid legal documentation. Methods used in practice are labor-intensive, subjective, and frequently comprise radiation exposure. Recently, also non-invasive methods using magnetic resonance imaging (MRI) have evaluated and confirmed a correlation between growth plate ossification in long bones and the chronological age of young subjects. However, automated and user-independent approaches are required to perform reliable assessments on large datasets. The aim of this study was to develop a fully automated and computer-based method for age estimation based on 3D knee MRIs using machine learning. The proposed solution is based on three parts: image-preprocessing, bone segmentation, and age estimation. A total of 185 coronal and 404 sagittal MR volumes from Caucasian male subjects in the age range of 13 and 21 years were available. The best result of the fivefold cross-validation was a mean absolute error of 0.67 ± 0.49 years in age regression and an accuracy of 90.9%, a sensitivity of 88.6%, and a specificity of 94.2% in classification (18-year age limit) using a combination of convolutional neural networks and tree-based machine learning algorithms. The potential of deep learning for age estimation is reflected in the results and can be further improved if it is trained on even larger and more diverse datasets.

摘要

年龄估计是法医学的一个关键要素,用于评估没有或缺乏有效法律文件的活体个体的实际年龄。实践中使用的方法劳动强度大、主观性强,并且经常涉及辐射暴露。最近,也使用磁共振成像(MRI)的非侵入性方法评估并证实了长骨生长板骨化与年轻受试者实际年龄之间的相关性。然而,需要自动化和用户独立的方法来对大型数据集进行可靠评估。本研究的目的是开发一种基于机器学习的全自动和基于计算机的 3D 膝关节 MRI 年龄估计方法。该解决方案基于三个部分:图像预处理、骨骼分割和年龄估计。共有 185 个来自 13 至 21 岁的白种男性受试者的冠状和 404 个矢状面 MRI 容积可用。五重交叉验证的最佳结果是年龄回归的平均绝对误差为 0.67 ± 0.49 岁,分类的准确率为 90.9%,灵敏度为 88.6%,特异性为 94.2%(18 岁年龄限制),使用卷积神经网络和基于树的机器学习算法的组合。深度学习在年龄估计方面的潜力反映在结果中,如果在更大、更多样化的数据集上进行训练,它可以进一步提高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/969f/7870623/da60d6ad01b1/414_2020_2465_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验