Suppr超能文献

双层石墨烯中螺旋边缘态介导的超电流。

Supercurrent mediated by helical edge modes in bilayer graphene.

作者信息

Rout Prasanna, Papadopoulos Nikos, Peñaranda Fernando, Watanabe Kenji, Taniguchi Takashi, Prada Elsa, San-Jose Pablo, Goswami Srijit

机构信息

QuTech and Kavli Institute of Nanoscience, Delft University of Technology, 2600 GA, Delft, The Netherlands.

Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC. Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain.

出版信息

Nat Commun. 2024 Jan 29;15(1):856. doi: 10.1038/s41467-024-44952-6.

Abstract

Bilayer graphene encapsulated in tungsten diselenide can host a weak topological phase with pairs of helical edge states. The electrical tunability of this phase makes it an ideal platform to investigate unique topological effects at zero magnetic field, such as topological superconductivity. Here we couple the helical edges of such a heterostructure to a superconductor. The inversion of the bulk gap accompanied by helical states near zero displacement field leads to the suppression of the critical current in a Josephson geometry. Using superconducting quantum interferometry we observe an even-odd effect in the Fraunhofer interference pattern within the inverted gap phase. We show theoretically that this effect is a direct consequence of the emergence of helical modes that connect the two edges of the sample. The absence of such an effect at high displacement field, as well as in bare bilayer graphene junctions, supports this interpretation and demonstrates the topological nature of the inverted gap.

摘要

包裹在二硒化钨中的双层石墨烯可以承载具有成对螺旋边缘态的弱拓扑相。该相的电学可调性使其成为研究零磁场下独特拓扑效应(如拓扑超导)的理想平台。在此,我们将这种异质结构的螺旋边缘与超导体耦合。在零位移场附近,体态能隙的反转伴随着螺旋态,导致约瑟夫森几何结构中临界电流的抑制。利用超导量子干涉测量,我们在反转能隙相的夫琅禾费干涉图样中观察到奇偶效应。我们从理论上表明,这种效应是连接样品两条边缘的螺旋模式出现的直接结果。在高位移场以及裸双层石墨烯结中不存在这种效应,支持了这一解释,并证明了反转能隙的拓扑性质。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0da6/10824753/c03f7c21b722/41467_2024_44952_Fig1_HTML.jpg

相似文献

1
Supercurrent mediated by helical edge modes in bilayer graphene.
Nat Commun. 2024 Jan 29;15(1):856. doi: 10.1038/s41467-024-44952-6.
2
Observation of Time-Reversal Invariant Helical Edge-Modes in Bilayer Graphene/WSe Heterostructure.
ACS Nano. 2021 Jan 26;15(1):916-922. doi: 10.1021/acsnano.0c07524. Epub 2020 Dec 30.
3
Uncovering Topological Edge States in Twisted Bilayer Graphene.
Nano Lett. 2022 Aug 10;22(15):6186-6193. doi: 10.1021/acs.nanolett.2c01481. Epub 2022 Jul 28.
4
Evidence for chiral supercurrent in quantum Hall Josephson junctions.
Nature. 2023 Dec;624(7992):545-550. doi: 10.1038/s41586-023-06764-4. Epub 2023 Nov 29.
5
Evidence of topological superconductivity in planar Josephson junctions.
Nature. 2019 May;569(7754):89-92. doi: 10.1038/s41586-019-1068-8. Epub 2019 Apr 24.
6
Edge superconductivity in multilayer WTe Josephson junction.
Natl Sci Rev. 2020 May 30;7(9):1468-1475. doi: 10.1093/nsr/nwaa114. eCollection 2020 Sep.
7
Compact SQUID Realized in a Double-Layer Graphene Heterostructure.
Nano Lett. 2020 Oct 14;20(10):7129-7135. doi: 10.1021/acs.nanolett.0c02412. Epub 2020 Sep 1.
8
Superconducting Quantum Interference in Edge State Josephson Junctions.
Phys Rev Lett. 2020 Oct 9;125(15):157701. doi: 10.1103/PhysRevLett.125.157701.
9
van der Waals π Josephson Junctions.
Nano Lett. 2022 Jul 13;22(13):5510-5515. doi: 10.1021/acs.nanolett.2c01640. Epub 2022 Jun 23.
10
Anomalous h/2e Periodicity and Majorana Zero Modes in Chiral Josephson Junctions.
Phys Rev Lett. 2024 Aug 2;133(5):056601. doi: 10.1103/PhysRevLett.133.056601.

本文引用的文献

1
Stabilizing the Inverted Phase of a WSe/BLG/WSe Heterostructure via Hydrostatic Pressure.
Nano Lett. 2023 Oct 25;23(20):9508-9514. doi: 10.1021/acs.nanolett.3c03029. Epub 2023 Oct 16.
2
Topological spintronics and magnetoelectronics.
Nat Mater. 2022 Jan;21(1):15-23. doi: 10.1038/s41563-021-01138-5. Epub 2021 Dec 23.
3
Observation of Time-Reversal Invariant Helical Edge-Modes in Bilayer Graphene/WSe Heterostructure.
ACS Nano. 2021 Jan 26;15(1):916-922. doi: 10.1021/acsnano.0c07524. Epub 2020 Dec 30.
4
Superconducting Quantum Interference in Edge State Josephson Junctions.
Phys Rev Lett. 2020 Oct 9;125(15):157701. doi: 10.1103/PhysRevLett.125.157701.
5
Helical quantum Hall phase in graphene on SrTiO.
Science. 2020 Feb 14;367(6479):781-786. doi: 10.1126/science.aax8201.
6
Quantum Hall Effect Measurement of Spin-Orbit Coupling Strengths in Ultraclean Bilayer Graphene/WSe Heterostructures.
Nano Lett. 2019 Oct 9;19(10):7028-7034. doi: 10.1021/acs.nanolett.9b02445. Epub 2019 Sep 30.
7
Spin-orbit-driven band inversion in bilayer graphene by the van der Waals proximity effect.
Nature. 2019 Jul;571(7763):85-89. doi: 10.1038/s41586-019-1304-2. Epub 2019 Jun 12.
8
Observation of the 4π-periodic Josephson effect in indium arsenide nanowires.
Nat Commun. 2019 Jan 16;10(1):245. doi: 10.1038/s41467-018-08161-2.
9
Strong Anisotropic Spin-Orbit Interaction Induced in Graphene by Monolayer WS_{2}.
Phys Rev Lett. 2018 Mar 9;120(10):106802. doi: 10.1103/PhysRevLett.120.106802.
10
h/e Superconducting Quantum Interference through Trivial Edge States in InAs.
Phys Rev Lett. 2018 Jan 26;120(4):047702. doi: 10.1103/PhysRevLett.120.047702.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验